Thu, 13 Feb 2020

15:00 - 16:00
C5

Jacobian threefolds, Prym surfaces and 2-Selmer groups

Jef Laga
(Cambridge)
Abstract

In 2013, Bhargava-Shankar proved that (in a suitable sense) the average rank of elliptic curves over Q is bounded above by 1.5, a landmark result which earned Bhargava the Fields medal. Later Bhargava-Gross proved similar results for hyperelliptic curves, and Poonen-Stoll deduced that most hyperelliptic curves of genus g>1 have very few rational points. The goal of my talk is to explain how simple curve singularities and simple Lie algebras come into the picture, via a modified Grothendieck-Brieskorn correspondence.

Moreover, I’ll explain how this viewpoint leads to new results on the arithmetic of curves in families, specifically for certain families of non-hyperelliptic genus 3 curves.

Thu, 21 Nov 2019

11:30 - 12:30
C4

On NIP formulas in groups

Gabriel Conant
(Cambridge)
Abstract

I will present joint work with A. Pillay on the theory of NIP formulas in arbitrary groups, which exhibit a local formulation of the notion of finitely satisfiable generics (as defined by Hrushovski, Peterzil, and Pillay). This setting generalizes ``local stable group theory" (i.e., the study of stable formulas in groups) and also the case of arbitrary NIP formulas in pseudofinite groups. Time permitting, I will mention an application of these results in additive combinatorics.

Mon, 25 Nov 2019
15:45
L6

Irrationality and monodromy for cubic threefolds

Ivan Smith
(Cambridge)
Abstract

The homological monodromy of the universal family of cubic threefolds defines a representation of a certain Artin-type group into the symplectic group Sp(10;\Z). We use Thurston’s classification of surface automorphisms to prove this does not factor through the genus five mapping class group.  This gives a geometric group theory perspective on the well-known irrationality of cubic threefolds, as established by Clemens and Griffiths.
 

Thu, 17 Oct 2019

12:00 - 13:00
L4

Quasi-normal modes on asymptotically flat black holes

Dejan Gajic
(Cambridge)
Abstract

A fundamental problem in the context of Einstein's equations of general relativity is to understand precisely the dynamical evolution of small perturbations of stationary black hole solutions. It is expected that there is a discrete set of characteristic frequencies that play a dominant role at late time intervals and carry information about the nature of the black hole, much like the normal frequencies of a vibrating string. These frequencies are called quasi-normal frequencies or resonances and they are closely related to scattering resonances in the study of Schrödinger-type equations. I will discuss a new method of defining and studying resonances for linear wave equations on asymptotically flat black holes, developed from joint work with Claude Warnick.

Mon, 29 Apr 2019
15:45
L6

Knots, SL_2(R) representations, and a total Lin invariant

Jacob Rasmussen
(Cambridge)
Abstract

X.S. Lin defined an invariant of knots in S^3 by counting represenations 
of the knot group into SU(2) with fixed meridinal holonomy. Lin's 
invariant was subsequently shown to coincide with the Levine-Tristam 
signature. I'll define an analogous total Lin invariant which counts 
repesentations into both SU(2) and SL_2(R). Unlike the SU(2) version, this 
invariant does not (as far as I know) coincide with other known 
invariants. I'll describe some applications to left-orderability of Dehn 
fillings and branched covers, as well as a curious connection with the 
Alexander polynomial. This is joint work with Nathan Dunfield.

Mon, 10 Jun 2019

14:15 - 15:15
L4

Moduli of polarised varieties via canonical Kähler metrics

Ruadhai Dervan
(Cambridge)
Abstract

Moduli spaces of polarised varieties (varieties together with an ample line bundle) are not Hausdorff in general. A basic goal of algebraic geometry is to construct a Hausdorff moduli space of some nice class of polarised varieties. I will discuss how one can achieve this goal using the theory of canonical Kähler metrics. In addition I will discuss some fundamental properties of this moduli space, for example the existence of a Weil-Petersson type Kähler metric. This is joint work with Philipp Naumann.

Mon, 04 Mar 2019
12:45
L5

Gauge Theory and Boundary Integrability

David Skinner
(Cambridge)
Abstract

Costello Yamazaki and Witten have proposed a new understanding of quantum integrable systems coming from a variant of Chern-Simons theory living on a product of two Riemann surfaces. I’ll review their work, and show how it can be extended to the case of integrable systems with boundary. The boundary Yang-Baxter Equations, twisted Yangians and Sklyanin determinants all have natural interpretations in terms of line operators in the theory.

Fri, 25 Jan 2019
16:00
L1

Ethics for mathematicians

Maurice Chiodo
(Cambridge)
Abstract

Teaching ethics to the mathematicians who need it most
For the last 20 years it has become increasingly obvious, and increasingly pressing, that mathematicians should be taught some ethical awareness so as to realise the impact of their work. This extends even to those more highly trained, like graduate students and postdocs. But which mathematicians should we be teaching this to, what should we be teaching them, and how should we do it? In this talk I’ll explore the idea that all mathematicians will, at some stage, be faced with ethical challenges stemming from their work, and yet few are ever told beforehand.
 

Tue, 12 Feb 2019
14:15
L4

Representations of p-adic groups

Jessica Fintzen
(Cambridge)
Abstract

In the 1990s Moy and Prasad revolutionized the representation theory of p-adic groups by showing how to use Bruhat-Tits theory to assign invariants to representations of p-adic groups. The tools they introduced resulted in rapid advancements in both representation theory and harmonic analysis -- areas of central importance in the Langlands program. A crucial ingredient for many results is an explicit construction of (types for) representations of p-adic groups. In this talk I will indicate why, survey what constructions are known (no knowledge about p-adic groups assumed) and present recent developments based on a refinement of Moy and Prasad's invariants.​

Subscribe to Cambridge