Tue, 09 Oct 2018
14:30
L6

Subsets of Cayley graphs that induce many edges

Oliver Janzer
(Cambridge)
Abstract

Let $G$ be a regular graph of degree $d$ and let $A\subset V(G)$. Say that $A$ is $\eta$-closed if the average degree of the subgraph induced by $A$ is at least $\eta d$. This says that if we choose a random vertex $x\in A$ and a random neighbour $y$ of $x$, then the probability that $y\in A$ is at least $\eta$. In recent joint work with Tim Gowers, we were aiming to obtain a qualitative description of closed subsets of the Cayley graph $\Gamma$ whose vertex set is $\mathbb{F}_2^{n_1}\otimes \dots \otimes \mathbb{F}_2^{n_d}$ with two vertices joined by an edge if their difference is of the form $u_1\otimes \cdots \otimes u_d$. For the matrix case (that is, when $d=2$), such a description was obtained by Khot, Minzer and Safra, a breakthrough that completed the proof of the 2-to-2 conjecture. We have formulated a conjecture for higher dimensions, and proved it in an important special case. In this talk, I will sketch this proof. Also, we have identified a statement about $\eta$-closed sets in Cayley graphs on arbitrary finite Abelian groups that implies the conjecture and can be considered as a "highly asymmetric Balog-Szemerédi-Gowers theorem" when it holds. I will present an example to show that this statement is not true for an arbitrary Cayley graph. It remains to decide whether the statement can be proved for the Cayley graph $\Gamma$.

Tue, 20 Nov 2018
14:15
L4

A Beilinson-Bernstein Theorem for p-adic analytic quantum groups

Nicolas Dupre
(Cambridge)
Abstract

The celebrated localisation theorem of Beilinson-Bernstein asserts that there is an equivalence between representations of a Lie algebra and modules over the sheaf of differential operators on the corresponding flag variety. In this talk we discuss certain analogues of this result in various contexts. Namely, there is a localisation theorem for quantum groups due to Backelin and Kremnizer and, more recently, Ardakov and Wadsley also proved a localisation theorem working with certain completed enveloping algebras of p-adic Lie algebras. We then explain how to combine the ideas involved in these results to construct
a p-adic analytic quantum flag variety and a category of D-modules on it, and we show that the global section functor on these D-modules yields an equivalence of categories.

Tue, 05 Jun 2018
14:30
L6

Fractional decompositions of dense graphs

Richard Montgomery
(Cambridge)
Abstract

It is difficult to determine when a graph G can be edge-covered by edge-disjoint copies of a fixed graph F. That is, when it has an F-decomposition. However, if G is large and has a high minimum degree then it has an F-decomposition, as long as some simple divisibility conditions hold. Recent research allows us to prove bounds on the necessary minimum degree by studying a relaxation of this problem, where a fractional decomposition is sought.

I will show how a relatively simple random process can give a good approximation to a fractional decomposition of a dense graph, and how it can then be made exact. This improves the best known bounds for this problem.
 

Thu, 17 May 2018

14:00 - 15:00
L4

Isogeometric multiresolution shape and topology optimisation

Dr. Fehmi Cirak
(Cambridge)
Abstract

Advances in manufacturing technologies, most prominently in additive manufacturing or 3d printing, are making it possible to fabricate highly optimised products with increasing geometric and hierarchical complexity. This talk will introduce our ongoing work on design optimisation that combines CAD-compatible geometry representations, multiresolution geometry processing techniques and immersed finite elements with classical shape and topology calculus. As example applications,the shape optimisation of mechanical structures and electromechanical components, and the topology optimisation of lattice-skin structures will be discussed.

Mon, 07 May 2018
15:45
L6

Detecting decompositions of hyperbolic groups

Benjamin J. Barrett
(Cambridge)
Abstract

When studying a group, it is natural and often useful to try to cut it up 
onto simpler pieces. Sometimes this can be done in an entirely canonical 
way analogous to the JSJ decomposition of a 3-manifold, in which the 
collection of tori along which the manifold is cut is unique up to isotopy. 
It is a theorem of Brian Bowditch that if the group acts nicely on a metric 
space with a negative curvature property then a canonical decomposition can 
be read directly from the large-scale geometry of that space. In this talk 
we shall explore an algorithmic consequence of this relationship between 
the large-scale geometry of the group and is algebraic decomposition.

Mon, 04 Jun 2018
15:45
L6

Heegaard Floer, taut foliations, and regions of rational surgery slopes

Sarah Rasmussen
(Cambridge)
Abstract

Recent tools make it possible to partition the space of rational Dehn 
surgery slopes for a knot (or in some cases a link) in a 3-manifold into 
domains over which the Heegaard Floer homology of the surgered manifolds 
behaves continuously as a function of slope. I will describe some 
techniques for determining the walls of discontinuity separating these 
domains, along with efforts to interpret some aspects of this structure 
in terms of the behaviour of co-oriented taut foliations. This talk 
draws on a combination of independent work, previous joint work with 
Jake Rasmussen, and work in progress with Rachel Roberts.

Fri, 15 Jun 2018

14:15 - 15:15
C3

The particulars of particulates

Nathalie Vriend
(Cambridge)
Abstract

A granular material forms a distinct and fascinating phase in physics -- sand acts as a fluid as grains flow through your fingers, the fallen grains form a solid heap on the floor or may suspend in the wind like a gas.

The main challenge of studying granular materials is the development of constitutive models valid across scales, from the micro-scale (collisions between individual particles), via the meso-scale (flow structures inside avalanches) to the macro-scale (dunes, heaps, chute flows).

In this talk, I am highlighting three recent projects from my laboratory, each highlighting physical behavior at a different scale. First, using the property of birefringence, we are quantifying both kinetic and dynamic properties in an avalanche of macroscopic particles and measure rheological properties. Secondly, we explore avalanches on an erodible bed that display an intriguing dynamic intermittency between regimes. Lastly, we take a closer look at aqueous (water-driven) dunes in a novel rotating experiment and resolve an outstanding scaling controversy between migration velocity and dune dimension.

Tue, 30 Jan 2018
14:30
L6

Embedding simply connected 2-complexes in 3-space

Johannes Carmesin
(Cambridge)
Abstract

We characterise the embeddability of simply connected 2-dimensional simplicial complexes in 3-space in a way analogous to Kuratowski’s characterisation of graph planarity, by excluded minors. This answers questions of Lovász, Pardon and Wagner.

 

Mon, 05 Feb 2018

14:15 - 15:15
L5

On symplectic stabilisations and mapping classes

Ailsa Keating
(Cambridge)
Abstract

In real dimension two, the symplectic mapping class group of a surface agrees with its `classical' mapping class group, whose properties are well-understood. To what extend do these generalise to higher-dimensions? We consider specific pairs of symplectic manifolds (S, M), where S is a surface, together with collections of Lagrangian spheres in S and in M, say v_1, ...,v_k and V_1, ...,V_k, that have analogous intersection patterns, in a sense that we will make precise. Our main theorem is that any relation between the Dehn twists in the V_i must also hold between Dehn twists in the v_i. Time allowing, we will give some corollaries, such as embeddings of certain interesting groups into auto-equivalence groups of Fukaya categories.

 

Subscribe to Cambridge