14:15
Hermitian metrics with constant Chern scalar curvature
Abstract
I will discuss some properties of Hermitian metrics on compact complex manifolds, having constant Chern scalar curvature, focusing on the existence problem in fixed Hermitian conformal classes (the "Chern-Yamabe problem"). This is joint work with Daniele Angella and Simone Calamai.
Acoustic liners in aircraft engines
Abstract
Noise limits are one of the major constraints when designing
aircraft engines. Acoustic liners are fitted in almost all civilian
turbofan engine intakes, and are being considered for use elsewhere in a
bid to further reduce noise. Despite this, models for acoustic liners
in flow have been rather poor until recently, with discrepancies of 10dB
or more. This talk will show why, and what is being done to model them
better. In the process, as well as mathematical modelling using
asymptotics, we will show that state of the art Computational
AeroAcoustics simulations leave a lot to be desired, particularly when
using optimized finite difference stencils.
The closed-open string map for S^1-invariant Lagrangians
Abstract
Given a Lagrangian submanifold invariant under a Hamiltonian loop, we partially compute the image of the loop's Seidel element under the closed-open string map into the Hochschild cohomology of the Lagrangian. This piece captures the homology class of the loop's orbits on the Lagrangian and can help to prove that the closed-open map is injective in some examples. As a corollary we prove that $\mathbb{RP}^n$ split-generates the Fukaya category of $\mathbb{CP}^n$ over a field of characteristic 2, and the same for real loci of some other toric varieties.
15:45
Infinite loop spaces and positive scalar curvature
Abstract
It is well known that there are topological obstructions to a manifold $M$ admitting a Riemannian metric of everywhere positive scalar curvature (psc): if $M$ is Spin and admits a psc metric, the Lichnerowicz–Weitzenböck formula implies that the Dirac operator of $M$ is invertible, so the vanishing of the $\hat{A}$ genus is a necessary topological condition for such a manifold to admit a psc metric. If $M$ is simply-connected as well as Spin, then deep work of Gromov--Lawson, Schoen--Yau, and Stolz implies that the vanishing of (a small refinement of) the $\hat{A}$ genus is a sufficient condition for admitting a psc metric. For non-simply-connected manifolds, sufficient conditions for a manifold to admit a psc metric are not yet understood, and are a topic of much current research.
I will discuss a related but somewhat different problem: if $M$ does admit a psc metric, what is the topology of the space $\mathcal{R}^+(M)$ of all psc metrics on it? Recent work of V. Chernysh and M. Walsh shows that this problem is unchanged when modifying $M$ by certain surgeries, and I will explain how this can be used along with work of Galatius and myself to show that the algebraic topology of $\mathcal{R}^+(M)$ for $M$ of dimension at least 6 is "as complicated as can possibly be detected by index-theory". This is joint work with Boris Botvinnik and Johannes Ebert.
Symmetric power functoriality for GL(2)
Abstract
Let f be an elliptic modular newform of weight at least 2. The
problem of the automorphy of the symmetric power L-functions of f is a
key example of Langlands' functoriality conjectures. Recently, the
potential automorphy of these L-functions has been established, using
automorphy lifting techniques, and leading to a proof of the Sato-Tate
conjecture. I will discuss a new approach to the automorphy of these
L-functions that shows the existence of Sym^m f for m = 1,...,8.