Symmetric power functoriality for GL(2)
Abstract
Let f be an elliptic modular newform of weight at least 2. The
problem of the automorphy of the symmetric power L-functions of f is a
key example of Langlands' functoriality conjectures. Recently, the
potential automorphy of these L-functions has been established, using
automorphy lifting techniques, and leading to a proof of the Sato-Tate
conjecture. I will discuss a new approach to the automorphy of these
L-functions that shows the existence of Sym^m f for m = 1,...,8.
Mirror symmetry for varieties of general type
Abstract
15:45
Exotic spheres and the topology of the symplectomorphism group
Abstract
Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction. Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.
Joint work with Jonny Evans.
15:45
Complex Geometry and the Hele-Shaw flow
Abstract
The goal of this talk is to discuss a link between the Homogeneous Monge Ampere Equation in complex geometry, and a certain flow in the plane motivated by some fluid mechanics. After discussing and motivating the Dirichlet problem for this equation I will focus to what is probably the first non-trivial case that one can consider, and prove that it is possible to understand regularity of the solution in terms of what is known as the Hele-Shaw flow in the plane. As such we get, essentially explicit, examples of boundary data for which there is no regular solution, contrary to previous expectation. All of this is joint work with David Witt Nystrom.
Infinitely many monotone Lagrangian Tori in CP^2
Abstract
14:00
Adjoint sensitivity analysis in Thermoacoustics
Abstract
Thermoacoustic oscillations occur in combustion chambers when heat release oscillations lock into pressure oscillations. They were first observed in lamps in the 18th century, in rockets in the 1930s, and are now one of the most serious problems facing gas turbine manufacturers.
This theoretical and numerical study concerns an infinite-rate chemistry diffusion flame in a tube, which is a simple model for a flame in a combustion chamber. The problem is linearized around the non-oscillating state in order to derive the direct and adjoint equations governing the evolution of infinitesimal oscillations.
The direct equations are used to predict the frequency, growth rate, and mode shape of the most unstable thermoacoustic oscillations. The adjoint equations are then used to calculate how the frequency and growth rate change in response to (i) changes to the base state such as the flame shape or the composition of the fuel (ii) generic passive feedback mechanisms that could be added to the device. This information can be used to stabilize the system, which is verified by subsequent experiments.
This analysis reveals that, as expected from a simple model, the phase delay between velocity and heat-release fluctuations is the key parameter in determining the sensitivities. It also reveals that this thermo-acoustic system is exceedingly sensitive to changes in the base state. This analysis can be extended to more accurate models and is a promising new tool for the analysis and control of thermo-acoustic oscillations.
Tractable interest rate and volatility models
Abstract
There are many financial models used in practice (CIR/Heston, Vasicek,
Stein-Stein, quadratic normal) whose popularity is due, in part, to their
analytically tractable asset pricing. In this talk we will show that it is
possible to generalise these models in various ways while maintaining
tractability. Conversely, we will also characterise the family of models
which admit this type of tractability, in the spirit of the classification
of polynomial term structure models.
Contact property of symplectic magnetic flows on the two-sphere.
Abstract
In this talk we aim to study periodic orbits on the energy levels of a symplectic magnetic flow on the two-sphere using methods from contact geometry. In particular we show that, if the energy is low enough, we either have two or infinitely many closed orbits. The second alternative holds if there exists a prime contractible periodic orbit. Finally we present some generalisations and work in progress for closed orientable surfaces of higher genus.