Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.
Optimisation on Probability Distributions - Are We There Yet?
Abstract
Several interesting and emerging problems in statistics, machine learning and optimal transport can be cast as minimisation of (entropy-regularised) objective functions defined on an appropriate space of probability distributions. Numerical methods have historically focused on linear objective functions, a setting in which one has access to an unnormalised density for the distributional target. For nonlinear objectives, numerical methods are relatively under-developed; for example, mean-field Langevin dynamics is considered state-of-the-art. In the nonlinear setting even basic questions, such as how to tell whether or not a sequence of numerical approximations has practically converged, remain unanswered. Our main contribution is to present the first computable measure of sub-optimality for optimisation in this context.
Joint work with Clémentine Chazal, Heishiro Kanagawa, Zheyang Shen and Anna Korba.
Bridging scales in biology: using mathematics to understand patterning and morphogenesis from molecular to tissue levels
Abstract
The development of a complex functional multicellular organism from a single cell involves tightly regulated and coordinated cell behaviours coupled through short- and long-range biochemical and mechanical signals. To truly comprehend this complexity, alongside experimental approaches we need mathematical and computational models, which can link observations to mechanisms in a quantitative, predictive, and experimentally verifiable way. In this talk I will describe our efforts to model aspects of embryonic development, focusing in particular on the planar polarised behaviours of cells in epithelial tissues, and discuss the mathematical and computational challenges associated with this work. I will also highlight some of our work to improve the reproducibility and re-use of such models through the ongoing development of Chaste (https://github.com/chaste), an open-source C++ library for multiscale modelling of biological tissues and cell populations.
What’s it like doing a PhD in maths/being an academic?
Abstract
This week's Fridays@2 will be a panel discussion focusing on what it is like to pursue a research degree. The panel will share their thoughts and experiences in a question-and-answer session, discussing some of the practicalities of being a postgraduate student, and where a research degree might lead afterwards.
15:30
Local convergence and metastability for mean-field particles in a multi-well potential
Abstract
We consider particles following a diffusion process in a multi-well potential and attracted by their barycenter (corresponding to the particle approximation of the Wasserstein flow of a suitable free energy). It is well-known that this process exhibits phase transitions: at high temperature, the mean-field limit has a single stationary solution, the N-particle system converges to equilibrium at a rate independent from N and propagation of chaos is uniform in time. At low temperature, there are several stationary solutions for the non-linear PDE, and the limit of the particle system as N and t go to infinity do not commute. We show that, in the presence of multiple stationary solutions, it is still possible to establish local convergence rates for initial conditions starting in some Wasserstein balls (this is a joint work with Julien Reygner). In terms of metastability for the particle system, we also show that for these initial conditions, the exit time of the empirical distribution from some neighborhood of a stationary solution is exponentially large with N and approximately follows an exponential distribution, and that propagation of chaos holds uniformly over times up to this expected exit time (hence, up to times which are exponentially large with N). Exactly at the critical temperature below which multiple equilibria appear, the situation is somewhat degenerate and we can get uniform in N convergence estimates, but polynomial instead of exponential.
17:00
Pfaffian Incidence Geometry and Applications
Abstract
Pfaffian functions, and by extension Pfaffian and semi-Pfaffian sets, play a crucial role in various areas of mathematics, including o-minimal theory. Incidence combinatorics has recently experienced a surge of activity, fuelled by the introduction of the polynomial partitioning method of Guth and Katz. While traditionally restricted to simple geometric objects such as points and lines, focus has shifted towards incidence questions involving higher dimensional algebraic or semi-algebraic sets. We present a generalization of the polynomial partitioning method to semi-Pfaffian sets and illustrate how this leads to Pfaffian generalizations of classic results in incidence geometry, such as the Szemerédi-Trotter Theorem. Finally, we outline an application of semi-Pfaffian geometry and Khovanskii's bound to the robustness of neural networks.
How to effectively manage your time
Abstract
This session will explore practical ways to manage your time effectively as a student. We’ll discuss how to find the right balance between revising and working on problem sheets, tools and strategies to help you plan your workload, and how to set realistic priorities. We’ll also talk about what kind of study balance makes sense over the Christmas break. Come along to pick up useful tips for staying organised, focused, and on top of your studies.
This session is likely to be most relevant for first-year undergraduates, but all are welcome.
Competition and warfare in bacteria and the human microbiome
Abstract
Microbial communities contain many evolving and interacting bacteria, which makes them complex systems that are difficult to understand and predict. We use theory – including game theory, agent-based modelling, ecological network theory and metabolic modelling - and combine this with experimental work to understand what it takes for bacteria to succeed in diverse communities. One way is to actively kill and inhibit competitors and we study the strategies that bacteria use in toxin-mediated warfare. We are now also using our approaches to understand the human gut microbiome and its key properties including ecological stability and the ability to resist invasion by pathogens (colonization resistance). Our ultimate goal is to both stabilise microbiome communities and remove problem species without the use of antibiotics.
14:15
Bubble sheets and $\kappa$-solutions in four-dimensional Ricci flow
Abstract
As discovered by Perelman, the study of ancient Ricci flows which are $\kappa$-noncollapsed is a crucial prerequisite to understanding the singularity behaviour of more general Ricci flows. In dimension three, these so-called "$\kappa$-solutions" have been fully classified through the groundbreaking work of Brendle, Daskalopoulos, and Šešum. Their classification result can be extended to higher dimensions, but only for those Ricci flows that have uniformly positive isotropic curvature (PIC), as well as weakly-positive isotropic curvature of the second type (PIC2); it appears the classification result fails with only minor modifications to the curvature assumption. Indeed, with the alternative assumption of non-negative curvature operator, a rich variety of new examples emerge, as recently constructed by Buttsworth, Lai, and Haslhofer; Haslhofer himself has conjectured that this list of non-negatively curved $\kappa$-solutions is now exhaustive in dimension four. In this talk, we will discuss some recent progress towards resolving Haslhofer's conjecture, including a compactness result for non-negatively curved $\kappa$-solutions in dimension four, and a symmetry improvement result for bubble-sheet regions. This is joint work with Anusha Krishnan and Timothy Buttsworth.
15:30
Kazhdan‘s property T, waist inequalities, and some speculations
Abstract
I will discuss a uniform waist inequality in codimension 2 for the family of finite covers of a Riemannian manifold whose fundamental group has Kazhdan‘s property T. I will describe a general strategy to prove waist inequalities based on a higher property T for Banach spaces. The general strategy can be implemented in codimension 2 but is conjectural in higher codimension. We speculate about the situation for lattices in semisimple Lie groups. Based on joint work with Uri Bader
14:30
DPhil Applications Q&A
Abstract
Your chance to ask Mathematrix DPhil students about the process of applying to PhD programs, including written stages and interviews!
Geometry optimisation of wave energy converters
The join button will be published 30 minutes before the seminar starts (login required).
Abstract
Wave energy has the theoretical potential to meet global electricity demand, but it remains less mature and less cost-competitive than wind or solar power. A key barrier is the absence of engineering convergence on an optimal wave energy converter (WEC) design. In this work, I demonstrate how geometry optimisation can deliver step-change improvements in WEC performance. I present methodology and results from optimisations of two types of WECs: an axisymmetric point-absorber WEC and a top-hinged WEC. I show how the two types need different optimisation frameworks due to the differing physics of how they make waves. For axisymmetric WECs, optimisation achieves a 69% reduction in surface area (a cost proxy) while preserving power capture and motion constraints. For top-hinged WECs, optimisation reduces the reaction moment (another cost proxy) by 35% with only a 12% decrease in power. These result show that geometry optimisation can substantially improve performance and reduce costs of WECs.
17:00
Sharply k-homogeneous actions on Fraïssé structures
Abstract
Cell shapes, migration and mechanics determine pattern formation during development
Abstract
Blood vessels are among the most vital structures in the human body, forming intricate networks that connect and support various organ systems. Remarkably, during early embryonic development—before any blood vessels are visible—their precursor cells are arranged in stereotypical patterns throughout the embryo. We hypothesize that these patterns guide the directional growth and fusion of precursor cells into hollow tubes formed from initially solid clusters. Further analysis of cells within these clusters reveals unique organization that may influence their differentiation into endothelial and blood cells. In this work, I revisit the problem of pattern formation through the lens of active matter physics, using both developing embryonic systems and in vitro cell culture models where similar patterns are observed during tissue budding. These different systems exhibit similar patterning behavior, driven by changes in cellular activity, adhesion and motility.