Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Tue, 04 Nov 2025
16:00
TBA

TBA

Sean Hartnoll
(DAMTP Cambridge)
Further Information

Joint seminar organised by the Random Matrix Theory group. Note this seminar is on a TUESDAY.

Abstract

TBA. 

Tue, 04 Nov 2025
16:00
C3

TBC

Aaron Kettner
(Institute of Mathematics, Czech Academy of Sciences)
Abstract

to follow

Wed, 05 Nov 2025

14:30 - 15:30
N3.12

Mathematrix: Crafts and Cakes

(Mathematrix)
Abstract

Come take a break and get to know other Mathematrix members over some crafts! All supplies and sweet treats provided.

Thu, 06 Nov 2025

12:00 - 13:00
L3

The KdV equation: exponential asymptotics, complex singularities and Painlevé II

Prof. Scott W McCue
(School of Mathematical Sciences Queensland University of Technology Brisbane)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Scott W. McCue is Professor of Applied Mathematics at Queensland University of Technology. His research spans interfacial dynamics, water waves, fluid mechanics, mathematical biology, and moving boundary problems. He is widely recognised for his contributions to modelling complex free-boundary phenomena, including thin-film rupture, Hele–Shaw flows, and biological invasion processes.

Abstract

We apply techniques of exponential asymptotics to the KdV equation to derive the small-time behaviour for dispersive waves that propagate in one direction.  The results demonstrate how the amplitude, wavelength and speed of these waves depend on the strength and location of complex-plane singularities of the initial condition.  Using matched asymptotic expansions, we show how the small-time dynamics of complex singularities of the time-dependent solution are dictated by a Painlevé II problem with decreasing tritronquée solutions.  We relate these dynamics to the solution on the real line.

 

 

Thu, 06 Nov 2025

14:00 - 15:00
Lecture Room 3

When AI Goes Awry

Des Higham
(University of Edinburgh)
Abstract

Over the last decade, adversarial attack algorithms have revealed instabilities in artificial intelligence (AI) tools. These algorithms raise issues regarding safety, reliability and interpretability; especially in high risk settings. Mathematics is at the heart of this landscape, with ideas from  numerical analysis, optimization, and high dimensional stochastic analysis playing key roles. From a practical perspective, there has been a war of escalation between those developing attack and defence strategies. At a more theoretical level, researchers have also studied bigger picture questions concerning the existence and computability of successful attacks. I will present examples of attack algorithms for neural networks in image classification, for transformer models in optical character recognition and for large language models. I will also show how recent generative diffusion models can be used adversarially. From a more theoretical perspective, I will outline recent results on the overarching question of whether, under reasonable assumptions, it is inevitable that AI tools will be vulnerable to attack.

Tue, 11 Nov 2025
14:00
L6

On the Local Converse Theorem for Depth $\frac{1}{N}$ Supercuspidal Representations of $\text{GL}(2N, F)$.

David Luo
Abstract

In this talk, we use type theory to construct a family of depth $\frac{1}{N}$ minimax supercuspidal representations of $p$-adic $\text{GL}(2N, F)$ which we call \textit{middle supercuspidal representations}. These supercuspidals may be viewed as a natural generalization of simple supercuspidal representations, i.e. those supercuspidals of minimal positive depth. Via explicit computations of twisted gamma factors, we show that middle supercuspidal representations may be uniquely determined through twisting by quasi-characters of $F^{\times}$ and simple supercuspidal representations of $\text{GL}(N, F)$. Furthermore, we pose a conjecture which refines the local converse theorem for general supercuspidal representations of $\text{GL}(n, F)$.

Tue, 11 Nov 2025
16:00
C3

TBC

Ghazaleh Asghari
(University of Reading)
Abstract

to follow

Thu, 13 Nov 2025

12:00 - 13:00
L3

 Tsunamis;  and how to protect against them

Prof. Herbert Huppert FRS
(University of Cambridge)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

 

Professor Herbert Eric Huppert FRS
University of Cambridge | University of New South Wales

Herbert Huppert (b. 1943, Sydney) is a British geophysicist renowned for his pioneering work applying fluid mechanics to the Earth sciences, with contributions spanning meteorology, oceanography, and geology. He has been Professor of Theoretical Geophysics and the Founding Director of the Institute of Theoretical Geophysics at the University of Cambridge since 1989, and a Fellow of King’s College, Cambridge, since 1970. He has held a part-time Professorship at the University of New South Wales since 1990.

Elected a Fellow of the Royal Society in 1987, Huppert has served on its Council and chaired influential working groups on bioterrorism and carbon capture and storage. His distinctions include the Arthur L. Day Prize and Lectureship from the US National Academy of Sciences (2005), the Bakerian Lecture (2011), and a Royal Medal (2020). He is also a Fellow of the American Geophysical Union, the American Physical Society, and the Academia Europaea.

Thu, 13 Nov 2025

14:00 - 15:00
Lecture Room 3

TBA

Francoise Tisseur
(University of Manchester)
Abstract

TBA

Thu, 13 Nov 2025
16:00
Lecture Room 4

TBA

Thomas Bloom
(Manchester)
Abstract

TBA

Fri, 14 Nov 2025

11:00 - 12:00
L1

How to make the most of your tutorials

Abstract

This session will look at how you can get the most out of your lectures and tutorials. We’ll talk about how to prepare effectively, make lectures more productive, and understand what tutors expect from you during tutorials. You’ll leave with practical tips to help you study more confidently and make your learning time count.


This session is likely to be most relevant for first-year undergraduates, but all are welcome.

Fri, 14 Nov 2025

11:00 - 12:00
L4

Self-generated chemotaxis of heterogeneous cell populations

Dr Mehmet Can Uçar
(School of Mathematical and Physical Sciences University of Sheffield)
Abstract

Cell and tissue movement during development, immune response, and cancer invasion depends on chemical or mechanical guidance cues. In many systems, this guidance arises not from long-range, pre-patterned cues but from self-generated gradients locally shaped by cells. However, how heterogeneous cell mixtures coordinate their migration by self-generated gradients remains largely unexplored. In this talk, I will first summarize our recent discovery that immune cells steer their long-range migration using self-generated chemotactic cues (Alanko et al., 2023). I will then introduce a multi-component Keller-Segel model that describes migration and patterning strategies of heterogeneous cell populations (Ucar et al., 2025). Our model predicts that the relative chemotactic sensitivities of different cell populations determine the shape and speed of traveling density waves, while boundary conditions such as external cell and attractant reservoirs substantially influence the migration dynamics. We quantitatively corroborate these predictions with in vitro experiments on co-migrating immune cell mixtures. Interestingly, immune cell co-migration occurs near the optimal parameter regime predicted by theory for coupled and colocalized migration. Finally, I will discuss the role of mechanical interactions, revealing a non-trivial interplay between chemotactic and mechanical non-reciprocity in driving collective migration.
 

Fri, 14 Nov 2025
12:00
N4.01

Mathematrix: Maths Isn't Neutral with Hana Ayoob

Hana Ayoob
(Mathematrix)
Abstract

Mathematicians often like to think of maths as objective. Science communicator Hana Ayoob joins us to discuss how the fact that humans do maths means that the ways maths is developed, used, and communicated are not neutral.

Mon, 17 Nov 2025

14:00 - 15:00
Lecture Room 3

Self-Supervised Machine Imaging

Prof Mike Davies
(University of Edinburgh)
Abstract

Modern deep learning methods provide the state-of-the-art in image reconstruction in most areas of computational imaging. However, such techniques are very data hungry and in a number of key imaging problems access to ground truth data is challenging if not impossible. This has led to the emergence of a range of self-supervised learning algorithms for imaging that attempt to learn to image without ground truth data. 

In this talk I will review some of the existing techniques and look at what is and might be possible in self-supervised imaging.

Mon, 17 Nov 2025

16:30 - 17:30
L4

Existence and nonexistence for equations of fluctuating hydrodynamics

Prof Johannes Zimmer
( TU-Munich)
Abstract

Equations of fluctuating hydrodynamics, also called Dean-Kawasaki type equations, are stochastic PDEs describing the evolution of finitely many interacting particles which obey a Langevin equation. First, we give a mathematical derivation for such equations. The focus is on systems of interacting particles described by second order Langevin equations. For such systems,  the equations of fluctuating hydrodynamics are a stochastic variant of Vlasov-Fokker-Planck equations, where the noise is white in space and time, conservative and multiplicative. We show a dichotomy previously known for purely diffusive systems holds here as well: Solutions exist only for suitable atomic initial data, but provably not for any other initial data. The class of systems covered includes several models of active matter. We will also discuss regularisations, where existence results hold under weaker assumptions. 

Tue, 18 Nov 2025

15:30 - 16:30
Online

Separation of roots of random polynomials

Marcus Michelen
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What do the roots of random polynomials look like? Classical works of Erdős-Turán and others show that most roots are near the unit circle and they are approximately rotationally equidistributed. We will begin with an understanding of why this happens and see how ideas from extremal combinatorics can mix with analytic and probabilistic arguments to show this. Another main feature of random polynomials is that their roots tend to "repel" each other. We will see various quantitative statements that make this rigorous. In particular, we will study the smallest separation $m_n$ between pairs of roots and show that typically $m_n$ is on the order of $n^{-5/4}$. We will see why this reflects repulsion between roots and discuss where this repulsion comes from. This is based on joint work with Oren Yakir.

Tue, 18 Nov 2025
16:00
C3

TBC

Forrest Glebe
(University of Hawaii )
Abstract

to follow

Wed, 19 Nov 2025
14:30
N3.12

Mathematrix Book Club

(Mathematrix)
Abstract

A discussion on how race and ethnicity interact with the concept of merit in academia, based on sections from the book 'Misconceiving Merit' by Blair-Loy and Cech.