Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
28 May 2019

Black holes are predicted by Einstein's theory of general relativity, and now we have ample observational evidence for their existence. However theoretically there are many unanswered questions about how black holes come into being. In this talk, with tools from hyperbolic PDE, quasilinear elliptic equations and geometric analysis, we will prove that, through a nonlinear focusing effect, initially low-amplitude and diffused gravitational waves can give birth to a trapped (black hole) region in our universe. This result extends the 2008 Christodoulou’s monumental work and it also proves a conjecture of Ashtekar on black-hole thermodynamics

  • Partial Differential Equations Seminar
29 May 2019
Marcus du Sautoy

Further Information: 

Oxford Mathematics Public Lectures together with the Simonyi Science Show:

Will a computer ever compose a symphony, write a prize-winning novel, or paint a masterpiece? And if so, would we be able to tell the difference?

In The Creativity Code, Marcus du Sautoy examines the nature of creativity, as well as providing an essential guide into how algorithms work, and the mathematical rules underpinning them. He asks how much of our emotional response to art is a product of our brains reacting to pattern and structure. And might machines one day jolt us in to being more imaginative ourselves?

Marcus du Sautoy is Simonyi Professor for the Public Understanding of Science in Oxford.

Mathematical Institute

Please email to register.

Watch live:

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

30 May 2019
Dominic Breit

It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill–posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to well–posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables - the mass density, the linear momentum, and the energy - in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.

  • PDE CDT Lunchtime Seminar
30 May 2019
Professor Peter Binev

One of the major steps in the adaptive finite element methods (AFEM) is the adaptive selection of the next partition. The process is usually governed by a strategy based on carefully chosen local error indicators and aims at convergence results with optimal rates. One can formally relate the refinement of the partitions with growing an oriented graph or a tree. Then each node of the tree/graph corresponds to a cell of a partition and the approximation of a function on adaptive partitions can be expressed trough the local errors related to the cell, i.e., the node. The total approximation error is then calculated as the sum of the errors on the leaves (the terminal nodes) of the tree/graph and the problem of finding an optimal error for a given budget of nodes is known as tree approximation. Establishing a near-best tree approximation result is a key ingredient in proving optimal convergence rates for AFEM.


The classical tree approximation problems are usually related to the so-called h-adaptive approximation in which the improvements a due to reducing the size of the cells in the partition. This talk will consider also an extension of this framework to hp-adaptive approximation allowing different polynomial spaces to be used for the local approximations at different cells while maintaining the near-optimality in terms of the combined number of degrees of freedom used in the approximation.


The problem of conformity of the resulting partition will be discussed as well. Typically in AFEM, certain elements of the current partition are marked and subdivided together with some additional ones to maintain desired properties of the partition like conformity. This strategy is often described as “mark → subdivide → complete”. The process is very well understood for triangulations received via newest vertex bisection procedure. In particular, it is proven that the number of elements in the final partition is limited by constant times the number of marked cells. This hints at the possibility to design a marking procedure that is limited only to cells of the partition whose subdivision will result in a conforming partition and therefore no completion step would be necessary. This talk will present such a strategy together with theoretical results about its near-optimal performance.

  • Computational Mathematics and Applications Seminar
30 May 2019
Angela Mihai

Likely instabilities in stochastic hyperelastic solids

L. Angela Mihai

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK



Nonlinear elasticity has been an active topic of fundamental and applied research for several decades. However, despite numerous developments and considerable attention it has received, there are important issues that remain unresolved, and many aspects still elude us. In particular, the quantification of uncertainties in material parameters and responses resulting from incomplete information remain largely unexplored. Nowadays, it is becoming increasingly apparent that deterministic approaches, which are based on average data values, can greatly underestimate, or overestimate, mechanical properties of many materials. Thus, stochastic representations, accounting for data dispersion, are needed to improve assessment and predictions. In this talk, I will consider stochastic hyperelastic material models described by a strain-energy density where the parameters are characterised by probability distributions. These models, which are constructed through a Bayesian identification procedure, rely on the maximum entropy principle and enable the propagation of uncertainties from input data to output quantities of interest. Similar modelling approaches can be developed for other mechanical systems. To demonstrate the effect of probabilistic model parameters on large strain elastic responses, specific case studies include the classic problem of the Rivlin cube, the radial oscillatory motion of cylindrical and spherical shells, and the cavitation and finite amplitude oscillations of spheres.

  • Industrial and Applied Mathematics Seminar
30 May 2019
Michalis Neururer

I will discuss the arithmetic significance of Fourier expansions of modular forms at cusps. I will talk about joint work with F. Brunault, where we determine the number field generated by Fourier coefficients of newforms at a cusp. Then I will discuss joint work with A. Saha and K. Česnavičius where we find denominator bounds for Fourier expansions at cusps and apply these bounds to a conjecture on the Manin constants of elliptic curves.

  • Number Theory Seminar
30 May 2019
Julio Backhoff

The problem of model uncertainty in financial mathematics has received considerable attention in the last years. In this talk I will follow a non-parametric point of view, and argue that an insightful approach to model uncertainty should not be based on the familiar Wasserstein distances. I will then provide evidence supporting the better suitability of the recent notion of adapted Wasserstein distances (also known as Nested Distances in the literature). Unlike their more familiar counterparts, these transport metrics take the role of information/filtrations explicitly into account. Based on joint work with M. Beiglböck, D. Bartl and M. Eder.

  • Mathematical and Computational Finance Seminar


Add to My Calendar