Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Tue, 30 Jun 2026 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2026

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2026. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Wed, 31 Dec 2025 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until the end of the year.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Thu, 09 Oct 2025

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

HSS iteration for solving the indefinite Helmholtz equation by multigrid with standard components

Colin Cotter
(Imperial College, London)
Abstract

We provide an iterative solution approach for the indefinite Helmholtz equation discretised using finite elements, based upon a Hermitian Skew-Hermitian Splitting (HSS) iteration applied to the shifted operator, and prove that the iteration is k- and mesh-robust when O(k) HSS iterations are performed. The HSS iterations involve solving a shifted operator that is suitable for approximation by multigrid using standard smoothers and transfer operators, and hence we can use O(N) parallel processors in a high performance computing implementation, where N is the total number of degrees of freedom. We argue that the algorithm converges in O(k) wallclock time when within the range of scalability of the multigrid. We provide numerical results verifying our proofs and demonstrating this claim, establishing a method that can make use of large scale high performance computing systems.

 

 

This talk is hosted by Rutherford Appleton Laboratory and will take place @ Harwell Campus, Didcot, OX11 0QX

Mon, 13 Oct 2025
14:15
L4

Non-maximal Toledo components

Oscar Garcia-Prada
(Instituto de Ciencias Matemáticas (ICMAT))
Abstract

The well-known Milnor-Wood inequality gives a bound on the Toledo invariant of a representation of the fundamental group of a compact surface in a non-compact Lie group of Hermitian type. While a lot is known regarding the counting of maximal Toledo components, and their role in higher Teichmueller theory, the non-maximal case remains elusive. In this talk, I will present a strategy to count the number of such non-maximal Toledo connected components. This is joint work in progress with Brian Collier and Jochen Heinloth, building on previous work with Olivier Biquard, Brian Collier and Domingo Toledo.

Mon, 13 Oct 2025
15:30
L5

Virtual fibring and Poincaré duality

Dawid Kielak
(Mathematical Institute Oxford)
Abstract

I will talk about the problem of recognising when a manifold admits a finite cover that fibres over the circle, with emphasis on the case of hyperbolic manifolds in odd dimensions. I will survey the state-of-art, and discuss the role that group theory plays in the problem. Finally, I will discuss a recent result that sheds light on the analogous group-theoretic problem, that is, virtual algebraic fibring of Poincaré-duality groups. The final theorem is joint with Sam Fisher and Giovanni Italiano.

Mon, 13 Oct 2025

16:30 - 17:30
L4

Local L^\infty estimates for optimal transport problems

Prof Lukas Koch 
(School of Mathematical and Physical Sciences University of Sussex)
Abstract

I will explain how to obtain local L^\infty estimates for optimal transport problems. Considering entropic optimal transport and optimal transport with p-cost, I will show how such estimates, in combination with a geometric linearisation argument, can be used in order to obtain ε-regularity statements. This is based on recent work in collaboration with M. Goldman (École Polytechnique) and R. Gvalani (ETH Zurich).

Tue, 14 Oct 2025
14:00
L6

The Laplace Transform on Lie Groups: A Representation-Theoretical Perspective

Ali Baklouti
(University of SFAX Tunisia)
Abstract

In this talk, I will present a representation-theoretical approach to constructing a non-commutative analogue of the classical Laplace transform on Lie groups. I will begin by discussing the motivations for such a generalization, emphasizing its connections with harmonic analysis, probability theory, and the study of evolution equations on non-commutative spaces. I will also outline some of the key challenges that arise when extending the Laplace transform to the setting of Lie groups, including the non-commutativity of the group operation and the complexity of its dual space.

The main part of the talk will focus on an explicit construction of the Laplace transform in the framework of connected, simply connected nilpotent Lie groups. This construction relies on Kirillov’s orbit method, which provides a powerful bridge between the geometry of coadjoint orbits and the representation theory of nilpotent groups.

As an application, I will describe an operator-theoretic analogue of the classical Müntz–Szász theorem, establishing a density result for a family of generalized polynomials in $L^2(0,1)$ associated with the group setting. This result highlights the strength of the representation-theoretical approach and its potential for solving classical approximation problems in a non-commutative context.

Tue, 14 Oct 2025
15:30
L4

Vafa-Witten invariants from modular anomaly

Sergey Alexandrov
(Montpelier)
Abstract
I'll present a modular anomaly equation satisfied by generating functions of refined Vafa-Witten invariants 
for the gauge group $U(N)$ on complex surfaces with $b_1=0$ and $b_2^+=1$, 
which has been derived from S-duality of string theory.
I'll show how this equation can used to find explicit expressions for these generating functions
(and their modular completions) on $\mathbb{CP}^2$, Hirzebruch and del Pezzo surfaces.
The construction for $\mathbb{CP}^2$ suggests also a new form of blow-up identities.
Tue, 14 Oct 2025
16:00
C3

TBC

Andrew Toms
(Professor of Mathematics, Purdue University; Leverhume Visiting Professor, University of Oxford )
Abstract

to follow

Wed, 15 Oct 2025
15:00
L5

The Polynomial Conjecture for Monomial Representations of Exponential Lie Groups

Ali Baklouti
(University of SFAX Tunisia)
Abstract

Let \( G = \exp(\mathfrak{g}) \) be a connected, simply connected nilpotent Lie group with Lie algebra \( \mathfrak{g} \), and let \( H = \exp(\mathfrak{h}) \) be a closed subgroup with Lie algebra \( \mathfrak{h} \). Consider a unitary character \( \chi \) of \( H \), given by \(\chi(\exp X) = \chi_{f}(\exp X) = e^{i f(X)}, \  X \in \mathfrak{h}, \) for some \( f \in \mathfrak{g}^{\ast} \). Let \( \tau = \operatorname{Ind}_{H}^{G} \chi \) denote the monomial representation of \( G \) induced from \( \chi \).

The object of interest is the algebra \( D_{\tau}(G/H) \) of \( G \)-invariant differential operators acting on the homogeneous line bundle associated with the data \( (G, H, \chi) \). Under the assumption that \( \tau \) has finite multiplicities, it is known that \( D_{\tau}(G/H) \) is commutative.

In this talk, I will discuss the Polynomial Conjecture for the representation \( \tau \), which asserts that the algebra \( D_{\tau}(G/H) \) is isomorphic to  
\(\mathbb{C}[\Gamma_{\tau}]^{H}\),  the algebra of \( H \)-invariant polynomial functions on \( \Gamma_{\tau} \). Here, \( \Gamma_{\tau} = f + \mathfrak{h}^{\perp} \) denotes the affine subspace of \( \mathfrak{g}^{\ast} \).

I will present recent advances toward proving this conjecture, with a particular emphasis on Duflo's Polynomial Conjecture concerning the Poisson center of \( \Gamma_{\tau} \). Furthermore, I will discuss the case where \( \tau \) has discrete-type multiplicities in the exponential setting, shedding light on a counterexample to Duflo's conjecture.
\end{document}

Thu, 16 Oct 2025

12:00 - 12:30
Lecture Room 4

A C0-hybrid interior penalty method for the nematic Helmholtz-Korteweg equation

Tim van Beeck
(University of Göttingen)
Abstract

The nematic Helmholtz-Korteweg equation is a fourth-order scalar PDE modelling time-harmonic acoustic waves in nematic Korteweg fluids, such as nematic liquid crystals. Conforming discretizations typically require C1-conforming elements, for example the Argyris element, whose implementation is notoriously challenging - especially in three dimensions - and often demands a high polynomial degree. 
In this talk, we consider an alternative non-conforming C0-hybrid interior penalty method that is both stable and convergent for any polynomial degree greater than two. Classical C0-interior penalty methods employ an H1-conforming subspace and treat the non-conformity with respect to H2 with discontinuous Galerkin techniques. Building on this idea, we use hybridization techniques to improve the computational efficiency of the discretization. We provide a brief overview of the numerical analysis and show numerical examples, demonstrating the method's ability to capture anisotropic propagation of sound in two and three dimensions. 

Thu, 16 Oct 2025

12:00 - 13:00
L3

Think Global, Act Local: A Mathematician's Guide to Inducing Localised Patterns

Dan J. Hill
(University of Oxford)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dan is a recently appointed Hooke Fellow within OCIAM. His research focus is on pattern formation and the emergence of localised states in PDE models, with an emphasis on using polar coordinate systems to understand nonlinear behaviour in higher spatial dimensions. He received his MMath and PhD from the University of Surrey, with a thesis on the existence of localised spikes on the surface of a ferrofluid, and previously held postdoctoral positions at Saarland University, including an Alexander von Humboldt Postdoctoral Fellowship. www.danjhill.com

Abstract
The existence of localised two-dimensional patterns has been observed and studied in numerous experiments and simulations: ranging from optical solitons, to patches of desert vegetation, to fluid convection. And yet, our mathematical understanding of these emerging structures remains extremely limited beyond one-dimensional examples.
 
In this talk I will discuss how adding a compact region of spatial heterogeneity to a PDE model can not only induce the emergence of fully localised 2D patterns, but also allows us to rigorously prove and characterise their bifurcation. The idea is inspired by experimental and numerical studies of magnetic fluids and tornados, where our compact heterogeneity corresponds to a local spike in the magnetic field and temperature gradient, respectively. In particular, we obtain local bifurcation results for fully localised patterns both with and without radial or dihedral symmetry, and rigorously continue these solutions to large amplitude. Notably, the initial bifurcating solution (which can be stable at bifurcation) varies between a radially-symmetric spot and a 'dipole' solution as the width of the spatial heterogeneity increases. 
 
This work is in collaboration with David J.B. Lloyd and Matthew R. Turner (both University of Surrey).
 
 
Thu, 16 Oct 2025

14:00 - 15:00
Lecture Room 3

Piecewise rational finite element spaces of differential forms

Evan Gawlik
(Santa Clara University)
Abstract

The Whitney forms on a simplicial triangulation are piecewise affine differential forms that are dual to integration over chains.  The so-called blow-up Whitney forms are piecewise rational generalizations of the Whitney forms.  These differential forms, which are also called shadow forms, were first introduced by Brasselet, Goresky, and MacPherson in the 1990s.  The blow-up Whitney forms exhibit singular behavior on the boundary of the simplex, and they appear to be well-suited for constructing certain novel finite element spaces, like tangentially- and normally-continuous vector fields on triangulated surfaces.  This talk will discuss the blow-up Whitney forms, their properties, and their applicability to PDEs like the Bochner Laplace problem.  

Fri, 17 Oct 2025

12:00 - 13:00
N4.01

Mathematrix Welcome Pizza Lunch

(Mathematrix)
Abstract

Join us for an initial welcome pizza lunch to start the academic year to learn about what's happening in Mathematrix in 2025/26! Meet other students who are from underrepresented groups in mathematics and allies :) 

Mon, 20 Oct 2025
14:15
L4

Einstein constants and differential topology

Claude LeBrun
(Stony Brook University)
Abstract

A Riemannian metric is said to be  Einstein if it has constant Ricci curvature. In dimensions 2 or 3, this is actually equivalent to requiring the metric to have constant sectional curvature. However,  in dimensions 4 and higher, the Einstein condition becomes significantly weaker than constant sectional curvature, and this has rather dramatic consequences. In particular, it turns out that there are  high-dimensional smooth closed manifolds that admit pairs of Einstein metrics with Ricci curvatures of opposite signs. After explaining how one constructs such examples, I will then discuss some recent results exploring the coexistence of Einstein metrics with zero and positive Ricci curvatures.

Mon, 20 Oct 2025
15:30
L3

Identifying Bass martingales via gradient descent

Walter Schachermayer
(University of Vienna)
Abstract

Brenier’s theorem and its Benamou-Brenier variant play a pivotal role
in optimal transport theory. In the context of martingale transport
there is a perfect analogue, termed stretched Brownian motion. We
show that under a natural irreducibility condition this leads to the
notion of Bass martingales.
For given probability measures µ and ν on Rn in convex order, the
Bass martingale is induced by a probability measure α. It is the min-
imizer of a convex functional, called the Bass functional. This implies
that α can be found via gradient descent. We compare our approach
to the martingale Sinkhorn algorithm introduced in dimension one by
Conze and Henry-Labordere.

Mon, 20 Oct 2025

16:30 - 17:30
L4

On non-isothermal flows of dilute incompressible polymeric fluids

Prof Josef Málek
(Faculty of Mathematics and Physics Charles University Prague)
Abstract

 In the first part of the talk, after revisiting some classical models for dilute polymeric fluids, we show that thermodynamically 
consistent models for non-isothermal flows of such fluids can be derived in a very elementary manner. Our approach is based on identifying the 
energy storage mechanisms and entropy production mechanisms in the fluid of interest, which in turn leads to explicit formulae for the Cauchy 
stress tensor and for all the fluxes involved. Having identified these mechanisms, we first derive the governing system of nonlinear partial 
differential equations coupling the unsteady incompressible temperature-dependent Navier–Stokes equations with a 
temperature-dependent generalization of the classical Fokker–Planck equation and an evolution equation for the internal energy. We then 
illustrate the potential use of the thermodynamic basis on a rudimentary stability analysis—specifically, the finite-amplitude (nonlinear) 
stability of a stationary spatially homogeneous state in a thermodynamically isolated system.

In the second part of the talk, we show that sequences of smooth solutions to the initial–boundary-value problem, which satisfy the 
underlying energy/entropy estimates (and their consequences in connection with the governing system of PDEs), converge to weak 
solutions that satisfy a renormalized entropy inequality. The talk is based on joint results with Miroslav Bulíček, Mark Dostalík, Vít Průša 
and Endré Süli.

Mon, 20 Oct 2025

16:30 - 17:30
L3

How to choose a model? A consequentialist approach

Prof. Thaleia Zariphopoulou
(University of Texas at Austin)
Abstract

Mathematical modelling and stochastic optimization are often based on the separation of two stages: At the first stage, a model is selected out of a family of plausible models and at the second stage, a policy is chosen that optimizes an underlying objective as if the chosen model were correct. In this talk, I will introduce a new approach which, rather than completely isolating the two stages, interlinks them dynamically. I will first introduce the notion of “consequential performance” of each  model and, in turn, propose a “consequentialist criterion for model selection” based on the expected utility of consequential performances. I will apply the approach to continuous-time portfolio selection and derive a key system of coupled PDEs and solve it for representative cases. I will, also, discuss the connection of the new approach with the popular methods of robust control and of unbiased estimators.   This is joint work with M. Strub (U. of Warwick)

Tue, 21 Oct 2025
14:00
L6

Profinite Rigidity, Noetherian Domains, and Solvable Groups

Julian Wykowski
(Cambridge)
Abstract

The question of profinite rigidity asks whether the isomorphism type of a group Γ can be recovered entirely from its finite quotients. In this talk, I will introduce the study of profinite rigidity in a different setting: the category of modules over a Noetherian domain Λ. I will explore properties of Λ-modules that can be detected in finite quotients and present two profinite rigidity theorems: one for free Λ-modules under a weak homological assumption on Λ, and another for all Λ-modules in the case when Λ is a Dedekind domain. Returning to groups, I will explain how these algebraic results yield new answers to profinite rigidity for certain classes of solvable groups. Time permitting, I will conclude with a sketch of future directions and ongoing collaborations that push these ideas further.

Tue, 21 Oct 2025
16:00
C3

TBC

Julian Gonzales
(University of Glasgow)
Abstract

to follow

Wed, 22 Oct 2025

14:30 - 15:30
N3.12

Mathematrix Book Club

(Mathematrix)
Abstract

Join us for the inaugural session of Mathematrix book club! Have you heard that office workplaces often have the thermostat set at a temperature that is too cold for women to work comfortably? This month we will be discussing the academic articles behind concepts that often come up in conversations about gender inequality in the workplace. The goal of book club is to develop an evidence-based understanding of diversity in mathematics and academia. 

 

Thu, 23 Oct 2025

12:00 - 13:00
L3

Master Stability for Traveling Waves on Networks

Stefan Ruschel
(University of Leeds)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Stefan Ruschel’s research focuses on dynamical systems theory and its applications to nonlinear optics and mathematical biology, among others. He specialises in analytical and numerical methods for delay differential and functional differential equations when the delay is large compared to other time scales of the system. His specific contributions include work on the fixed point spectrum for large delay, as well as the characterisation of slowly oscillating solutions such as travelling pulses and waves.

His future research is dedicated to applying these techniques to delay and lattice dynamical systems arising from coupled excitable and coupled bi-stable systems in laser dynamics and neuroscience, where such solutions play an important role in data transmission and neural signal propagation.

He is currently a research fellow at the University of Leeds (UK), funded by UKRI in recognition of a Horizon Europe MSCA award post-Brexit.

Abstract

 I will present a new framework for determining effectively the spectrum and stability of traveling waves on
networks with symmetries, such as rings and lattices, by computing master stability curves (MSCs). Unlike
traditional methods, MSCs are independent of system size and can be readily used to assess wave
destabilization and multi-stability in small and large networks.

 

 

 

Thu, 23 Oct 2025

12:00 - 12:30
Lecture Room 4

TBA

Boris Andrews
(Mathematical Institute (University of Oxford))
Abstract

TBA 

Thu, 23 Oct 2025

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

TBA

Paul Goulart
(Oxford University)
Abstract

TBA

 

 

 

This talk is hosted by Rutherford Appleton Laboratory and will take place @ Harwell Campus, Didcot, OX11 0QX