Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Tue, 30 Jun 2026 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2026

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2026. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Mon, 01 Jun 2026 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until June 2026.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Mon, 08 Dec 2025

16:30 - 17:30
L5

Improved regularity for nodal sets of Abelian Yang-Mills-Higgs equations.

Dr. Shengwen Wang
(Queen Mary University of London)
Abstract
We consider Yang-Mills-Higgs equations with U(1) gauge group. There is a deep relation between the adiabatic limit of a sequence of this physical PDEs and geometric PDE of minimal submanifolds. It is known that the energy measures are converging to a codimension 2 stationary varifold and the energy functional is converging to the codimension 2 mass. When the ambient dimension is \leq 4 or the sequence is minimizing, we can improve the weak convergence above and obtain strong regularity for the nodal sets that they are converging to the limit minimal submanifold with uniform $C^{2,\alpha}$ bounds. This is joint work with Huy Nguyen. 


 

Wed, 10 Dec 2025

12:00 - 13:00
C4

Quasi-resonant collisions in kinetic theory and bi-temperature systems

Thomas Borsoni
(ENPC, France)
Abstract

Some molecules exhibit a peculiar behavior during collisions, called resonant: they exchange separately kinetic and internal energies. If the molecules of a gas undergo only resonant collisions, the equilibrium distribution exhibits two distinct temperatures, a kinetic and an internal one. To account for more realistic scenarios, we consider ‘’quasi’’-resonant collisions, where a very tiny exchange between kinetic and internal energies is allowed. We propose a mathematical framework for the notion of quasi-resonance, which leads to a Boltzmann model where the distribution is known at all times, a two-temperature Maxwellian, and converges towards a one-temperature Maxwellian. With this feature at hand, we derive so-called Landau-Teller equations, allowing us to replace the complicated Boltzmann equation by a simple ODE system of two equations.

Mon, 12 Jan 2026

17:00 - 18:00
C1

From Flatland to Cannonballs – designing historical lessons and workshops for secondary school pupils & their teachers

Snezana Lawrence
(Independent Scholar)
Abstract
In this talk I will outline framework I have designed and used that has helped me create engaging history of mathematics lessons and workshops for pupils aged 11+ as well as train teachers to do the same. This presupposes a use of history of mathematics to enchant and engage, rather than create an academic account or lecture for a listening audience. It is, in other words, a practical guidance to be discussed further at the end of the talk.
 
Starting from familiar contexts such as Flatland, honeycombs, and cannonball stacks, a number of lessons and workshops can be designed to motivate curiosity for learning more about exciting mathematical ideas as well as exploring high-dimensional concepts. This talk is suitable for all and anyone interested in the role the history of mathematics can play in mathematics education.
Wed, 14 Jan 2026

14:00 - 15:00
Lecture Room 3

TBA

Andrew Gordon Wilson
Abstract

TBA 

Thu, 15 Jan 2026
16:00
Lecture Room 3

TBA

Sean Howe
(University of Utah)
Mon, 19 Jan 2026

15:30 - 16:30
L3

TBA

Prof. Andreas Kyprianou
(Dept of Mathematics University of Warwick)
Abstract

TBA

Tue, 20 Jan 2026
14:00
L6

An Explicit Basis for the Centre of the Restricted Enveloping Algebra of sl_2

Zhenyu Yang, Rick Chen
(Oxford University)
Abstract

The centre of the universal enveloping algebra of a complex semisimple Lie algebra has been understood for a long time since the pioneering work of Harish-Chandra. In contrast, the centres of the equivalent notions in characteristic p are still yet to be computed explicitly. In this talk, Zhenyu Yang and Rick Chen will present an explicit basis for the centre of the restricted enveloping algebra of sl_2, constructed from explicit calculations combined with techniques from non-commutative rings and Morita equivalences. They will then explain how to generalise the argument to compute the centre of the distribution algebra of the second Frobenius kernel of the algebraic group SL_2. This work was part of their summer project under the supervision of Konstantin Ardakov.

Tue, 20 Jan 2026
16:00
C3

TBC

Konstantin Recke
((Mathematical Institute University of Oxford))
Abstract

to follow

Wed, 21 Jan 2026
14:30
L3

TBA

Nutsa Gegelia
(Johannes Gutenberg University Mainz)
Thu, 22 Jan 2026

12:00 - 13:00
L3

OCIAM TBC

Katerina Kaouri
(Cardiff)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr. Kaouri is working on developing models of airborne transmission in indoor spaces, in collaboration with the University of Oxford and funded by the Welsh Government. She continues to create tools for future epidemics. She has also been developing models for IVF (in-vitro fertilisation) and embryogenesis, focusing on the interplay between calcium signalling and cellular mechanics, and she leads the inFer academia-clinic interdisciplinary GW4 network, which aims to improve IVF success rates.

Mon, 26 Jan 2026

17:00 - 18:00
L1

Enhancing Wind Energy Using Unsteady Fluid Mechanics

Prof. John Dabiri
(California Institute of Technology, USA)
Further Information
Abstract

This talk will describe recent studies of how time-dependent, unsteady flow physics can be exploited to improve the performance of energy harvesting systems such as wind turbines. A theoretical analysis will revisit the seminal Betz derivation to identify the role of unsteady flow from first principles. Following will be a discussion of an experimental campaign to test the predictions of the theoretical model. Finally, a new line of research related to turbulence transition and inspired by the work of T. Brooke Benjamin will be introduced.

 

Tue, 27 Jan 2026
12:30

TBA

Jasper Knox
Abstract

WCMB, University of Oxford and University of Bristol

Tue, 27 Jan 2026
14:00
L6

TBC

Adam Thomas
(University of Warwick)
Abstract

to follow

Tue, 27 Jan 2026
16:00
C3

TBC

Tim Austin
(University of Warwick)
Abstract

to follow

Thu, 29 Jan 2026

12:00 - 13:00
L3

OCIAM TBC

Anne Skeldon
(University of Surrey)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Anne Skeldon’s background is in dynamical systems and bifurcation theory. Her early research focused on pattern formation and fluid mechanics, particularly the Faraday wave problem. She later shifted towards applications in biology and sociology, serving as a co-investigator on the six-year complexity-science project Evolution and Resilience of Industrial Ecosystems. She is part of the Mathematics of Life and Social Sciences research group and co-leads the cross-faculty Centre for Mathematical and Computational Biology.

Her current research centres on sleep, circadian rhythms, and data science. She collaborates with researchers at the Surrey Sleep Research Centre to develop and analyse mathematical models of sleep–wake regulation—work that has featured in the UK parliamentary debate, “School should start at 10am because teenagers are too tired.” She has a particular interest in the influence of the light environment on sleep, including the potential effects of permanent daylight saving time, and in the use of mathematical models for fatigue risk management.

Thu, 29 Jan 2026
16:00
Lecture Room 4

TBA

Kevin Buzzard
(Imperial College London)
Mon, 02 Feb 2026

15:30 - 16:30
L3

Mean field games without rational expectations

Benjamin MOLL
(LSE)
Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning that the heterogeneous agents being modeled correctly know all relevant transition probabilities for the complex system they inhabit. When there is common noise, it becomes necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-JacobiBellman equation in which the infinite-dimensional density of agents is a state variable. The rational expectations assumption and the implication that agents solve Master equations is unrealistic in many applications. We show how to instead formulate MFGs with non-rational expectations. Departing from rational expectations is particularly relevant in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward function depends on the density only through low-dimensional functionals of this density. This happens, for example, in most macroeconomics MFGs in which these lowdimensional functionals have the interpretation of “equilibrium prices.” In MFGs with a low-dimensional coupling, departing from rational expectations allows for completely sidestepping the Master equation and for instead solving much simpler finite-dimensional HJB equations. We introduce an adaptive learning model as a particular example of nonrational expectations and discuss its properties.
Mon, 02 Feb 2026

16:30 - 17:30
L4

Mean-field limits of non-exchangeable interacting diffusions on co-evolutionary networks

Prof. David Poyato
(University of Granada)
Abstract
Multi-agent systems are ubiquitous in Science, and they can be regarded as large systems of interacting particles with the ability to generate large-scale self-organized structures from simple local interactions rules between each agent and its neighbors. Since the size of the system is typically huge, an important question is to connect the microscopic and macroscopic scales in terms of mean-field limits, which is a fundamental problem in Physics and Mathematics closely related to Hilbert Sixth Problem. In most real-life applications, the communication between agents is not based on uniform all-to-all couplings, but on highly heterogeneous connections, and this makes agents distinguishable. However, the classical strategies based on mean-field limits are strongly based on the crucial assumption that agents are indistinguishable, and it therefore does not apply to our distinguishable setting, so that we need substantially new ideas.
 
In this talk I will present a recent work about the rigorous derivation of the mean-field limit for systems of non-exchangeable interacting diffusions on co-evolutionary networks. While previous research has primarily addressed continuum limits or systems with linear weight dynamics, our work overcomes these restrictions. The main challenge arises from the coupling between the network weight dynamics and the agents' states, which results in a non-Markovian dynamics where the system’s future depends on its entire history. Consequently, the mean-field limit is not described by a partial differential equation, but by a system of non-Markovian stochastic integrodifferential equations. A second difficulty stems from the non-linear weight dynamics, which requires a careful choice for the limiting network structure. Due to the limitations of the classical theory of graphons (Lovász and Szegedy, 2006) in handling non-linearities, we employ K-graphons (Lovász and Szegedy, 2010), also termed probability-graphons (Abraham, Delmas, and Weibel, 2025). This framework pro seems to provide a natural topology that is compatible with such non-linearities.
 
This is a joint work with Julián Cabrera-Nyst (University of Granada).
Thu, 05 Feb 2026

12:00 - 13:00
L3

OCIAM TBC

Marcelo Dias
(University of Edinburgh)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Marcelo A. Dias is a Reader in Structural Engineering at the University of Edinburgh. His research spans theoretical structural mechanics, soft condensed matter, and materials modelling. He focuses on understanding how the mechanical behaviour of elastic bodies emerges from the interplay between material composition and carefully designed internal geometry. His work has applications across shape formation in nature, biomechanics, materials and structural mechanics, and the controlled design and functionality of thin plates and shells. You can find some wonderful examples of this research on his research site: https://mazdias.wordpress.com/research/ 

Thu, 05 Feb 2026
16:00
Lecture Room 4

TBA

Tobias Berger
(University of Sheffield)
Fri, 06 Feb 2026

11:00 - 12:00
L4

Phase transition in collective dynamics

Prof Sara Merino-Aceituno
(Dept of Maths Universitat Wien)
Abstract

Certain models of collective dynamics exhibit deceptively simple patterns that are surprisingly difficult to explain. These patterns often arise from phase transitions within the underlying dynamics. However, these phase transitions can be explained only when one derives continuum equations from the corresponding individual-based models. In this talk, I will explore this subtle yet rich phenomenon and discuss advances and open problems.

Mon, 09 Feb 2026

14:00 - 15:00
Lecture Room 3

What makes an image realistic ?

Lucas Theis
Abstract

The last decade has seen tremendous progress in our ability to generate realistic-looking data, be it images, text, audio, or video. In this presentation, we will look at the closely related problem of quantifying realism, that is, designing functions that can reliably tell realistic data from unrealistic data. This problem turns out to be significantly harder to solve and remains poorly understood, despite its prevalence in machine learning and recent breakthroughs in generative AI. Drawing on insights from algorithmic information theory, we discuss why this problem is challenging, why a good generative model alone is insufficient to solve it, and what a good solution would look like. In particular, we introduce the notion of a universal critic, which unlike adversarial critics does not require adversarial training. While universal critics are not immediately practical, they can serve both as a North Star for guiding practical implementations and as a tool for analyzing existing attempts to capture realism.

Mon, 09 Feb 2026

15:30 - 16:30
L3

TBA

Irfan Glogić
(Bielefeld University)
Abstract

TBA

Mon, 09 Feb 2026

16:30 - 17:30
L4

Scattering and Asymptotics for Critically Weakly Hyperbolic and Singular Systems

Dr. Arick Shao
(Queen Mary University of London)
Abstract

We study a very general class of first-order linear hyperbolic
systems that both become weakly hyperbolic and contain singular
lower-order coefficients at a single time t = 0. In "critical" weakly
hyperbolic settings, it is well-known that solutions lose a finite
amount of regularity at t = 0. Here, we both improve upon the analysis
in the weakly hyperbolic setting, and we extend this analysis to systems
containing critically singular coefficients, which may also exhibit
modified asymptotics and regularity loss at t = 0.

In particular, we give precise quantifications for (1) the asymptotics
of solutions as t approaches 0, (2) the scattering problem of solving
the system with asymptotic data at t = 0, and (3) the loss of regularity
due to the degeneracies at t = 0. Finally, we discuss a wide range of
applications for these results, including weakly hyperbolic wave
equations (and equations of higher order), as well as equations arising
from relativity and cosmology (e.g. at big bang singularities).

This is joint work with Bolys Sabitbek (Ghent).

Tue, 10 Feb 2026
14:45
L6

TBC

Corina-Gabriela Ciobotaru
(Aarhus University)
Abstract

to follow

Thu, 12 Feb 2026
16:00
Lecture Room 4

TBA

Vandita Patel
(University of Manchester)
Mon, 16 Feb 2026

16:30 - 17:30
L4

TBA

David Gomez-Castro
(UAM)
Abstract

TBA

Thu, 19 Feb 2026

12:00 - 13:00
L3

OCIAM Post-doc Talks

Dr Fiyanshu Kaka & Carmela Moschella
((Mathematical Institute University of Oxford))

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Finyashu Kaka is a materials scientist specialising in sustainable energy technologies, advanced functional materials, and computational modelling. His work spans organic photovoltaics, solid-state and metal-ion batteries, MXene-based materials, and next-generation thermal barrier coatings. He combines physics-based modelling with machine-learning methods to understand and optimise process–structure–property relationships in energy devices. His research appears in leading journals, and he holds several patents in flexible electronics and energy-efficient thermal systems. He is currently working with Professor Jon Chapman as a postdoctoral researcher in OCIAM.

Thu, 19 Feb 2026

12:00 - 13:00
L3

OCIAM TBC

Edwina Yeo
(University College London)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Edwina Yeo is an applied mathematician working at the interface of continuum mechanics and mathematical biology. She specialises in developing mathematical models for biological and biomedical fluid-mechanics processes, with research spanning regenerative medicine, nanotechnology, microbiology and geology. Her recent work includes models of bacterial adhesion in fluid flow, Von Willebrand Factor dynamics in arterial flows, and microscale contaminant behaviour extracted from imaging data.

Her publications appear in journals such as Biomechanics and Modelling in Mechanobiology, Advanced Materials, and Royal Society Interface, alongside recent collaborative preprints. She is currently an EPSRC National Fellow in Fluid Dynamics at UCL and a visiting research fellow in OCIAM.

Thu, 19 Feb 2026

14:00 - 15:00
Lecture Room 3

TBA

Jongho Park
(King Abdullah University of Science and Technology (KAUST))
Abstract

TBA

Fri, 20 Feb 2026

11:00 - 12:00
L4

The rogue within: uncovering hidden heterogeneity in heart cell networks

Dr Noemi Picco
(Dept. of Maths, Swansea University)
Abstract

Normal heart function relies of the fine-tuned synchronization of cellular components. In healthy hearts, calcium oscillations and physical contractions are coupled across a synchronised network of 3 billion heart cells. When the process of functional isolation of rogue cells isn’t successful, the network becomes maladapted, resulting in cardiovascular diseases, including heart failure and arrythmia. To advance knowledge on this normal-to-disease transition we must first address the lack of a mechanistic understanding of the plastic readaptation of these networks. In this talk I will explore coupling and loss of synchronisation using a mathematical model of calcium oscillations informed by experimental data. I will show some preliminary results pointing at the heterogeneity hidden behind seemingly uniform cell populations, as a causative mechanism behind disrupted dynamics in maladapted networks.