Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
13 October 2020
Asaf Nachmias

Further Information: 

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.


Let $G_n$ be a sequence of finite, simple, connected, regular graphs with degrees tending to infinity and let $T_n$ be a uniformly drawn spanning tree of $G_n$. In joint work with Yuval Peres we show that the local limit of $T_n$ is the $\text{Poisson}(1)$ branching process conditioned to survive forever (that is, the asymptotic frequency of the appearance of any small subtree is given by the branching process). The proof is based on electric network theory and I hope to show most of it.

  • Combinatorial Theory Seminar
15 October 2020
Jim Bremer


One of the standard methods for the solution of elliptic boundary value problems calls for reformulating them as systems of integral equations.  The integral operators that arise in this fashion typically have singular kernels, and, in many cases of interest, the solutions of these equations are themselves singular.  This makes the accurate discretization of the systems of integral equations arising from elliptic boundary value problems challenging.

Over the last decade, Generalized Gaussian quadrature rules, which are n-point quadrature rules that are exact for a collection of 2n functions, have emerged as one of the most effective tools for discretizing singular integral equations. Among other things, they have been used to accelerate the discretization of singular integral operators on curves, to enable the accurate discretization of singular integral operators on complex surfaces and to greatly reduce the cost of representing the (singular) solutions of integral equations given on planar domains with corners.

We will first briefly outline a standard method for the discretization of integral operators given on curves which is highly amenable to acceleration through generalized Gaussian quadratures. We will then describe a numerical procedure for the construction of Generalized Gaussian quadrature rules.

Much of this is joint work with Zydrunas Gimbutas (NIST Boulder) and Vladimir Rokhlin (Yale University).

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to

  • Computational Mathematics and Applications Seminar
15 October 2020
Pierre Haas

Tissue folding during animal development involves an intricate interplay
of cell shape changes, cell division, cell migration, cell
intercalation, and cell differentiation that obfuscates the underlying
mechanical principles. However, a simpler instance of tissue folding
arises in the green alga Volvox: its spherical embryos turn themselves
inside out at the close of their development. This inversion arises from
cell shape changes only.

In this talk, I will present a model of tissue folding in which these
cell shape changes appear as variations of the intrinsic stretches and
curvatures of an elastic shell. I will show how this model reproduces
Volvox inversion quantitatively, explains mechanically the arrest of
inversion observed in mutants, and reveals the spatio-temporal
regulation of different biological driving processes. I will close with
two examples illustrating the challenges of nonlinearity in tissue
folding: (i) constitutive nonlinearity leading to nonlocal elasticity in
the continuum limit of discrete cell sheet models; (ii) geometric
nonlinearity in large bending deformations of morphoelastic shells.

  • Industrial and Applied Mathematics Seminar
16 October 2020

 Inherent fluctuations may play an important role in biological and chemical systems when the copy number of some chemical species is small. This talk will present the recent work on the stochastic modeling of reaction-diffusion processes in biochemical systems. First, I will introduce several stochastic models, which describe system features at different scales of interest. Then, model reduction and coarse-graining methods will be discussed to reduce model complexity. Next, I will show multiscale algorithms for stochastic simulation of reaction-diffusion processes that couple different modeling schemes for better efficiency of the simulation. The algorithms apply to the systems whose domain is partitioned into two regions with a few molecules and a large number of molecules.

  • Mathematical Biology and Ecology Seminar
16 October 2020
Dr Richard Earl, Dr Neil Laws and Dr Vicky Neale

What should you expect in intercollegiate classes?  What can you do to get the most out of them?  In this session, experienced class tutors will share their thoughts, including advice about hybrid and online classes. 

All undergraduate and masters students welcome, especially Part B and MSc students attending intercollegiate classes. (Students who attended the Part C/OMMS induction event will find significant overlap between the advice offered there and this session!)

19 October 2020
Jon Keating

 I will review what is known and not known about the joint moments of the characteristic polynomials of random unitary matrices and their derivatives. I will then explain some recent results which relate the joint moments to an interesting class of measures, known as Hua-Pickrell measures. This leads to the proof of a conjecture, due to Chris Hughes in 2000, concerning the asymptotics of the joint moments, as well as establishing a connection between the measures in question and one of the Painlevé equations.

  • String Theory Seminar


Add to My Calendar