Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
23 January 2018
15:45
Dominic Joyce
Abstract

Let $\mathbb K$ be a field, and $\mathcal M$ be the “projective linear" moduli stack of objects in a suitable $\mathbb K$-linear abelian category  $\mathcal A$ (such as the coherent sheaves coh($X$) on a smooth projective $\mathbb K$-scheme $X$) or triangulated category $\mathcal T$ (such as the derived category $D^b$coh($X$)). I will explain how to define a Lie bracket [ , ] on the homology $H_*({\mathcal M})$ (with a nonstandard grading), making $H_*({\mathcal M})$ into a graded Lie algebra. This is a new variation on the idea of Ringel-Hall algebra.
 There is also a differential-geometric version of this: if $X$ is a compact manifold with a geometric structure giving instanton-type equations (e.g. oriented Riemannian 4-manifold, $G_2$-manifold, Spin(7)-manifold) then we can define Lie brackets both on the homology of the moduli spaces of all $U(n)$ or $SU(n)$ connections on $X$ for all $n$, and on the homology of the moduli spaces of instanton $U(n)$ or $SU(n)$ connections on $X$ for all $n$.
 All this is (at least conjecturally) related to enumerative invariants, virtual cycles, and wall-crossing formulae under change of stability condition.
 Several important classes of invariants in algebraic and differential geometry — (higher rank) Donaldson invariants of 4-manifolds (in particular with $b^2_+=1$), Mochizuki invariants counting semistable coherent sheaves on surfaces, Donaldson-Thomas type invariants for Fano 3-folds and CY 4-folds — are defined by forming virtual classes for moduli spaces of “semistable” objects, and integrating some cohomology classes over them. The virtual classes live in the homology of the “projective linear" moduli stack. Yuuji Tanaka and I are working on a way to define virtual classes counting strictly semistables, as well as just stables / stable pairs. 
 I conjecture that in all these theories, the virtual classes transform under change of stability condition by a universal wall-crossing formula (from my previous work on motivic invariants) in the Lie algebra $(H_*({\mathcal M}), [ , ])$. 

  • Algebraic Geometry Seminar
23 January 2018
16:00
Ehud Hrushovski
Abstract

The number of solutions of a given algebro-geometric configuration, when it is finite, does not change upon a small perturbation of the parameters; this persists 
even upon specializations that change the topology.    The precise formulation of this principle of Poncelet and Schubert   required, i.a., the notions of   algebraically closed fields, flatness, completenesss, multiplicity.     I will explain a model-theoretic version, presented in   quite different terms.  It applies notably to difference equations involving the Galois-Frobenius automorphism $x^p$, uniformly in a prime $p$.   In fixed positive characteristic, interesting technical problems arise that I will discuss if time permits.  

25 January 2018
12:00
Grzegorz Karch
Abstract


Recent results on viscous conservation laws with nonlocal flux will be presented. Such models contain, as a particular example, the celebrated parabolic-elliptic Keller-Segel model of chemotaxis. Here, global-in-time solutions are constructed under (nearly) optimal assumptions on the size of radial initial data. Moreover, criteria for blowup of solutions in terms of their local concerntariotions will be derived.

  • PDE CDT Lunchtime Seminar
25 January 2018
14:00
Bart Vandereycken
Abstract

We present discrete methods for computing low-rank approximations of time-dependent tensors that are the solution of a differential equation. The approximation format can be Tucker, tensor trains, MPS or hierarchical tensors. We will consider two types of discrete integrators: projection methods based on quasi-optimal metric projection, and splitting methods based on inexact solutions of substeps. For both approaches we show numerically and theoretically that their behaviour is superior compared to standard methods applied to the so-called gauged equations. In particular, the error bounds are robust in the presence of small singular values of the tensor’s matricisations. Based on joint work with Emil Kieri, Christian Lubich, and Hanna Walach.

  • Computational Mathematics and Applications Seminar
25 January 2018
16:00
to
17:30
Martin Huessman
Abstract

In classical optimal transport, the contributions of Benamou–Brenier and 
Mc-Cann regarding the time-dependent version of the problem are 
cornerstones of the field and form the basis for a variety of 
applications in other mathematical areas.

Based on a weak length relaxation we suggest a Benamou-Brenier type 
formulation of martingale optimal transport. We give an explicit 
probabilistic representation of the optimizer for a specific cost 
function leading to a continuous Markov-martingale M with several 
notable properties: In a specific sense it mimics the movement of a 
Brownian particle as closely as possible subject to the marginal 
conditions a time 0 and 1. Similar to McCann’s 
displacement-interpolation, M provides a time-consistent interpolation 
between $\mu$ and $\nu$. For particular choices of the initial and 
terminal law, M recovers archetypical martingales such as Brownian 
motion, geometric Brownian motion, and the Bass martingale. Furthermore, 
it yields a new approach to Kellerer’s theorem.

(based on joint work with J. Backhoff, M. Beiglböck, S. Källblad, and D. 
Trevisan)

  • Mathematical and Computational Finance Seminar
25 January 2018
16:00
Lucia Mocz
Abstract

The Faltings height is a useful invariant for addressing questions in arithmetic geometry. In his celebrated proof of the Mordell and Shafarevich conjectures, Faltings shows the Faltings height satisfies a certain Northcott property, which allows him to deduce his finiteness statements. In this work we prove a new Northcott property for the Faltings height. Namely we show, assuming the Colmez Conjecture and the Artin Conjecture, that there are finitely many CM abelian varieties of a fixed dimension which have bounded Faltings height. The technique developed uses new tools from integral p-adic Hodge theory to study the variation of Faltings height within an isogeny class of CM abelian varieties. In special cases, we are able to use these techniques to moreover develop new Colmez-type formulas for the Faltings height.

  • Number Theory Seminar

Pages

Add to My Calendar