Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
Tomorrow
14:00
Dr Vicky Neale and Dr Richard Earl
Abstract

The last Fridays@2 of the year will be the Prelims Preparation Lecture aimed at first-year undergraduates. Richard Earl and Vicky Neale will highlight some key points to be aware of as you prepare for exams, thinking both about exam technique and revision strategy, and a student will offer some tips from their personal experience.  This will complement the Friday@2 event in Week 2, on Managing exam anxiety.  As part of the Prelims Preparation session, we'll look through two past exam questions, giving tips on how to structure a good answer.  You'll find that most helpful if you've worked through the questions yourself beforehand, so this is advance notice so that you can slot the questions into your timetable for the next few days.  They are both from 2013, one is Q5 from Maths I (on the Groups and Group Actions course), and the other is Q3 from Maths IV (on the Dynamics course).  You can access these, and a large collection of other past Prelims exam questions, via the archive.

Tomorrow
14:00
to
15:30
Prof. Richard Scott
Abstract

In this talk, we will consider how two very different atmospheric phenomena, the terrestrial tropical cyclone and the martian polar vortex, can be described within a single simplified dynamical framework based on the forced shallow water equations. Dynamical forcings include angular momentum transport by secondary (transverse) circulations and local heating due to latent heat release. The forcings act in very different ways in the two systems but in both cases lead to distinct annular distributions of potential vorticity, with a local vorticity maximum at a finite radius surrounding a central minimum.  In both systems, the resulting vorticity distributions are subject to shear instability and the degree of eddy growth versus annular persistence can be examined explicitly under different forcing scenarios.

  • Mathematical Geoscience Seminar
Tomorrow
16:00
Philip Maini
Abstract

What is the point of giving a talk?  What is the point of going to a talk?  In this presentation, which is intended to have a lot of audience participation, I would like to explore how one should prepare talks for different audiences and different occasions, and what one should try to get out of going to a talk.

27 May 2019
15:45
Abstract

A two-dimensional, minimally Supersymmetric Quantum Field Theory is "nullhomotopic" if it can be deformed to one with spontaneous supersymmetry breaking, including along deformations that are allowed to "flow up" along RG flow lines. SQFTs modulo nullhomotopic SQFTs form a graded abelian group $SQFT_\bullet$. There are many SQFTs with nonzero index; these are definitely not nullhomotopic, and indeed represent nontorision classes in $SQFT_\bullet$. But relations to topological modular forms suggests that $SQFT_\bullet$ also has rich torsion. Based on an analysis of mock modularity and holomorphic anomalies, I will describe explicitly a "secondary invariant" of SQFTs and use it to show that a certain element of $SQFT_3$ has exact order $24$. This work is joint with D. Gaiotto and E. Witten.

28 May 2019
12:00
to
13:15
Joseph Conlon
Abstract

String compactifications are essential for connecting string theory to low energy particle physics and cosmology. Moduli stabilisation gives rise to effective Lagrangians that capture the low-energy degrees of freedom. Much recent interest has been on swampland consistency conditions on such effective
field theories - which low energy Lagrangians can arise from quantum gravity? Furthermore, given that moduli stabilisation scenarios often exist in AdS space, we can also ask: what do swampland conditions mean in the context of AdS/CFT? I describe work on developing a holographic understanding of moduli stabilisation and swampland consistency conditions. I focus in particular on the Large Volume Scenario, which is especially appealing from a holographic perspective as in the large volume limit all its interactions can be expressed solely in terms of the AdS radius, with no free dimensionless parameters.

 

  • Quantum Field Theory Seminar
28 May 2019
12:00
Abstract


Coupling dynamics of the states of the nodes of a network to the dynamics of the network topology leads to generic absorbing and fragmentation transitions. The coevolving voter model is a typical system that exhibits such transitions at some critical rewiring. We study the robustness of these transitions under two distinct ways of introducing noise. Noise affecting all the nodes destroys the absorbing-fragmentation transition, giving rise in finite-size systems to two regimes: bimodal magnetization and dynamic fragmentation. Noise targeting a fraction of nodes preserves the transitions but introduces shattered fragmentation with its characteristic fraction of isolated nodes and one or two giant components. Both the lack of absorbing state for homogeneous noise and the shift in the absorbing transition to higher rewiring for targeted noise are supported by analytical approximations.

Paper Link:

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032803

28 May 2019
14:00
Paul Méndez
Abstract

A stationary Navier-Stokes-Brinkman model coupled to a system of advection-diffusion equations serves as a model for so-called double-diffusive viscous flow in porous mediain which both heat and a solute within the fluid phase are subject to transport and diffusion. The solvability analysis of these governing equations results as a combination of compactness arguments and fixed-point theory. In addition an H(div)-conforming discretisation is formulated by a modification of existing methods for Brinkman flows. The well-posedness ofthe discrete Galerkin formulation is also discussed, and convergence properties are derived rigorously. Computational tests confirm the predicted rates of error decay and illustrate the applicability of the methods for the simulation of bacterial bioconvection and thermohaline circulation problems.

  • Numerical Analysis Group Internal Seminar
28 May 2019
14:15
to
15:30
Stacey Law
Abstract

Let $p$ be an odd prime and $n$ a natural number. We determine the irreducible constituents of the permutation module induced by the action of the symmetric group $S_n$ on the cosets of a Sylow $p$-subgroup $P_n$. In the course of this work, we also prove a symmetric group analogue of a well-known result of Navarro for $p$-solvable groups on a conjugacy action of $N_G(P)$. Before describing some consequences of these results, we will give an overview of the background and recent related results in the area.

28 May 2019
15:30
Dominic Bunnett
Abstract

The moduli space of smooth hypersurfaces in projective space was constructed by Mumford in the 60’s using his newly developed classical (a.k.a. reductive) Geometric Invariant Theory.  I wish to generalise this construction to hypersurfaces in weighted projective space (or more generally orbifold toric varieties). The automorphism group of a toric variety is in general non-reductive and I will use new results in non-reductive GIT, developed by F. Kirwan et al., to construct a moduli space of quasismooth hypersurfaces in certain weighted projective spaces. I will give geometric characterisations of notions of stability arising from non-reductive GIT.

  • Algebraic Geometry Seminar

Pages

Add to My Calendar