Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
Tomorrow
14:00
Joseph Field
Abstract

Medical imaging is a key diagnostic tool, and is paramount for disease detection and for patient monitoring during ongoing care. Often, to reduce the amount of radiation that a patient is subjected to, there is a strong incentive to consider image reconstruction from incomplete sets of measurements, and so the imaging process is formulated as a compressed sensing problem.

In this talk, we will focus on compressed sensing for digital tomosynthesis (DTS), in which three-dimensional images are reconstructed from a set of two-dimensional X-ray projections. We first discuss a reconstruction approach for static bodies, with a particular interest in the choice of basis for the image representation. We will then focus on the need for accurate image reconstructions when the body of interest is not stationary, but is undergoing simple motion, discussing two different approaches for tackling this dynamic problem.

  • Numerical Analysis Group Internal Seminar
Tomorrow
14:30
Andrew Thompson
Abstract

I will describe a novel algorithm for computing the Walsh Hadamard Transform (WHT) which consists entirely of Haar wavelet transforms. The algorithm shares precisely the same serial complexity as the popular divide-and-conquer algorithm for the WHT. There is also a natural way to parallelize the algorithm which appears to have a number of attractive features.

  • Numerical Analysis Group Internal Seminar
Tomorrow
15:45
Wenzhe Yang
Abstract

In mirror symmetry, the prepotential on the Kahler side has an expansion, the constant term of which is a rational multiple of zeta(3)/(2 pi i)^3 after an integral symplectic transformation. In this talk I will explain the connection between this constant term and the period of a mixed Hodge-Tate structure constructed from the limit MHS at large complex structure limit on the complex side. From Ayoub’s works on nearby cycle functor, there exists an object of Voevodsky’s category of mixed motives such that the mixed Hodge-Tate structure is expected to be a direct summand of the third cohomology of its Hodge realisation. I will present the connections between this constant term and conjecture about how mixed Tate motives sit inside Voevodsky’s category, which will also provide a motivic interpretation to the occurrence of zeta(3) in prepotential. 

  • Algebraic Geometry Seminar
Tomorrow
16:00
Lotte Kestner
Abstract

 

(Joint with Gareth Boxall) In this talk I will introduce some properties of distal theories. I will remark that distality is preserved neither under reducts nor expansions of the language. I will then go on to discuss a recent result that the Shelah expansion of a theory is distal if and only if the theory itself is distal. 

23 November 2017
12:00
Abstract


In the study of variational models for non-linear elasticity in the context of proving regularity we are led to the challenging so-called Ball-Evan's problem of approximating a Sobolev homeomorphism with diffeomorphisms in its Sobolev space. In some cases however we are not able to guarantee that the limit of a minimizing sequence is a homeomorphism and so the closure of Sobolev homeomorphisms comes into the game. For $p\geq 2$ they are exactly Sobolev monotone maps and for $1\leq p<2$ the monotone maps are intricately related to these limits. In our paper we prove that monotone maps can be approximated by diffeomorphisms in their Sobolev (or Orlicz-Sobolev) space including the case $p=1$ not proven by Iwaniec and Onninen.
 

  • PDE CDT Lunchtime Seminar
23 November 2017
14:00
Professor Benedikt Wirth
Abstract

Spline curves represent a simple and efficient tool for data interpolation in Euclidean space. During the past decades, however, more and more applications have emerged that require interpolation in (often high-dimensional) nonlinear spaces such as Riemannian manifolds. An example is the generation of motion sequences in computer graphics, where the animated figure represents a curve in a Riemannian space of shapes. Two particularly useful spline interpolation methods derive from a variational principle: linear splines minimize the average squared velocity and cubic splines minimize the average squared acceleration among all interpolating curves. Those variational principles and their discrete analogues can be used to define continuous and discretized spline curves on (possibly infinite-dimensional) Riemannian manifolds. However, it turns out that well-posedness of cubic splines is much more intricate on nonlinear and high-dimensional spaces and requires quite strong conditions on the underlying manifold. We will analyse and discuss linear and cubic splines as well as their discrete counterparts on Riemannian manifolds and show a few applications.

  • Computational Mathematics and Applications Seminar
23 November 2017
16:00
Matthew Butler
Abstract

Many species of insects adhere to vertical and inverted surfaces using footpads that secrete thin films of a mediating fluid. The fluid bridges the gap between the foot and the target surface. The precise role of this liquid is still subject to debate, but it is thought that the contribution of surface tension to the adhesive force may be significant. It is also known that the footpad is soft, suggesting that capillary forces might deform its surface. Inspired by these physical ingredients, we study a model problem in which a thin, deformable membrane under tension is adhered to a flat, rigid surface by a liquid droplet. We find that there can be multiple possible equilibrium states, with the number depending on the applied tension and aspect ratio of the system. The presence of elastic deformation  ignificantly enhances the adhesion force compared to a rigid footpad. A mathematical model shows that the equilibria of the system can be controlled via two key parameters depending on the imposed separation of the foot and target surface, and the tension applied to the membrane. We confirm this finding experimentally and show that the system may transition rapidly between two states as the two parameters are varied. This suggests that different strategies may be used to adhere strongly and then detach quickly.

  • Industrial and Applied Mathematics Seminar

Pages

Add to My Calendar