Forthcoming events in this series


Wed, 21 May 2025
16:00
L6

(Seminar cancelled) Generalized Tate-Shafarevich groups over function fields

Tamás Szamuely
(Università degli studi di Pisa)
Abstract

Given a smooth geometrically connected curve C over a perfect field k and a smooth commutative group scheme G defined over the function field K of C, one can consider isomorphism classes of G-torsors locally trivial at completions of K coming from closed points of C. They form a generalized Tate-Shafarevich group which specializes to the classical one in the case when k is finite. Recently, these groups have been studied over other base fields k as well, for instance p-adic or number fields. Surprisingly, finiteness can be proven in some cases but there are also quite a few open questions which I plan to discuss  in my talk.

Wed, 12 Feb 2025
16:00
Lecture Room 4

Weak integrality of finitely presented groups

Hélène Esnault
(Freie Universität Berlin)
Abstract

This is  a notion we defined with Johan de Jong. If a finitely presented group  is the topological fundamental group of a smooth quasi-projective complex variety, then we prove that it is weakly integral. To this aim we use the Langlands program (both arithmetic to produce companions and geometric to use de Jong’s conjecture). On the other hand there are finitely presented groups which are not weakly integral (Breuillard). So this notion is an obstruction.
 

Wed, 05 Feb 2025
16:00
Lecture Room 4

Twisting Higgs modules and applications to the p-adic Simpson correspondence II

Ahmed Abbes
(IHES)
Abstract

[This is the second in a series of two talks; the first talk will be in the Algebra Seminar of Tuesday Feb 4th https://www.maths.ox.ac.uk/node/70022]

In 2005, Faltings initiated a p-adic analogue of the complex Simpson correspondence, a theory that has since been explored by various authors through different approaches. In this two-lecture series (part I in the Algebra Seminar and part II in the Arithmetic Geometry Seminar), I will present a joint work in progress with Michel Gros and Takeshi Tsuji, motivated by the goal of comparing the parallel approaches we have developed and establishing a robust framework to achieve broader functoriality results for the p-adic Simpson correspondence.

The approach I developed with M. Gros relies on the choice of a first-order deformation and involves a torsor of deformations along with its associated Higgs-Tate algebra, ultimately leading to Higgs bundles. In contrast, T. Tsuji's approach is intrinsic, relying on Higgs envelopes and producing Higgs crystals. The evaluations of a Higgs crystal on different deformations differ by a twist involving a line bundle on the spectral variety.  A similar and essentially equivalent twisting phenomenon occurs in the first approach when considering the functoriality of the p-adic Simpson correspondence by pullback by a morphism that may not lift to the chosen deformations.
We introduce a novel approach to twisting Higgs modules using Higgs-Tate algebras, similar to the first approach of the p-adic Simpson correspondence. In fact, the latter can itself be reformulated as a twist. Our theory provides new twisted higher direct images of Higgs modules, that we apply to study the functoriality of the p-adic Simpson correspondence by higher direct images with respect to a proper morphism that may not lift to the chosen deformations. Along the way, we clarify the relation between our twisting and another twisting construction using line bundles on the spectral variety that appeared recently in other works.