[Cancelled]
Abstract
Due to a family emergency, the speaker unfortunately had to cancel this talk.
Forthcoming events in this series
Due to a family emergency, the speaker unfortunately had to cancel this talk.
In the 1970s, Serre conjectured that any continuous, irreducible and odd mod p representation of the absolute Galois group G_Q is modular. Serre furthermore conjectured that there should be an explicit minimal weight "k" such that the Galois representation is modular of this weight, and that this weight only depends on the restriction of the Galois representation to the inertial subgroup I_p. This is often called the weight part of Serre's conjecture. Both the weight part, and the modularity part, of the Serre's conjecture are nowadays known to be true. In this talk, I want to explain how to rephrase the conjecture in representation theoretic terms (for k >= 2), so that the weight k is replaced by a certain (mod p) irreducible representation of GL_2(F_p), and how upon rephrasing the conjecture one can realize it as a statement about local-global compatibility with the mod p local Langlands correspondence.
This talk will be a case study on the recently discovered boundary Carrollian conformal algebra (BCCA) in theoretical physics. It is an infinite-dimensional subalgebra of an abelian extension of the Witt algebra. A striking feature of this is that it is not integer graded; this already puts us in a rather novel setting, since infinite-dimensional Lie algebras almost exclusively appear with integer grading in physics. But this means that there is new ground to be broken in this direction of research. In this talk, I will present some very early results from our attempt at studying the representations of the BCCA. Any thoughts and comments are very welcome as they could be immensely helpful for us to navigate these unfamiliar waters!
Complex representations of p-adic groups are in many ways well-understood. The category has Bernstein's decomposition into blocks, and for many groups each block is known to be equivalent to modules over a Hecke algebra. In particular, the unipotent block of GLn (the block containing the trivial representation) is equivalent to the modules over an extended affine hecke algebra of type A. Over \bar{Fl} the situation is more complicated in the general case: the Bernstein block decomposition can fail (eg for SP8), and there is no longer in general an equivalence with the Hecke algebra. However, some groups, such as GLn and its inner forms, still have a Bernstein decomposition. Furthermore, Vigernas showed that the unipotent block of GLn contains a subcategory that is equivalent to modules over the Schur algebra, a mild extension of the Hecke algebra with much of the same theory, and this subcategory generates the unipotent block under extensions. Building on this work, we show that the derived category of the unipotent block of GLn is triangulated-equivalent to the perfect complexes over a dg-enriched Schur algebra. We prove this by combining general finiteness results about Schur algebras with the well-known structure of the l-modular unipotent blocks of GLn over finite fields.
A monoid S is said to be weakly right coherent if every finitely generated right ideal of S is finitely presented as a right S-act. It is known that S is weakly right coherent if and only if it satisfies the following conditions: S is right ideal Howson, meaning that the intersection of any two finitely generated right ideals of S is finitely generated; and the right annihilator congruences r(a)={(u,v) in S x S | au=av} for each a in S are finitely generated as right congruences.
This talk will introduce basic semigroup theoretic concepts as is necessary before briefly surveying some important coherency-related results. Closure properties of the classes of monoids satisfying each of the above properties will be shared, with details explored for a specific construction. Time permitting, connections with axiomatisation will be discussed.
This talk will in part be based on a paper written with coauthors Craig Miller and Victoria Gould, preprint available at: arXiv:2411.03947.
The category PAb of profinite abelian groups is an abelian category with many nice properties, which allows us to do most of standard homological algebra. The category PAb naturally embeds into the category TAb of topological abelian groups, but TAb is not abelian, nor does it have a satisfactory theory of tensor products. On the other hand, PAb also naturally embeds into the category CondAb of "condensed abelian groups", which is an abelian category with nice properties. We will show that the embedding of profinite modules into condensed modules (actually, into "solid modules") preserves usual homological notions such Ext and Tor, so that the condensed world might be a better place to study profinite modules than the topological world.
Hilbert’s fourteenth problem is concerned with whether invariant rings under algebraic group actions are finitely generated. A number of examples have been constructed since the mid-20th century which demonstrate that this is not always the case. However such examples by their nature are difficult to construct, and we know little about their underlying structure. This talk aims to provide an introduction to the topic of Hilbert’s fourteenth problem, as well as the finite generation ideal - a key tool used to further understand these counterexamples. We focus particularly on the example constructed by Daigle and Freudenberg at the turn of the 21st century, and describe the work undertaken to compute the finite generation ideal of this example.
There is a well-known relationship between finite W-algebras and Yangians. The work of Rogoucy and Sorba on the "rectangular case" in type A eventually led Brundan and Kleshchev to introduce shifted Yangians, which surject onto the finite W-algebras for general linear Lie algebras. Thus, these W-algebras can be realised as truncated shifted Yangians. In parallel, the work of Ragoucy and then Brown showed that truncated twisted Yangians are isomorphic to the finite W-algebra associated to a rectangular nilpotent element in a Lie algebra of type B, C or D. For many years there has been a hope that this relationship can be extended to other nilpotent elements.
I will report on a joint work with Lewis Topley in which we introduced the shifted twisted Yangians, following the work of Lu-Wang-Zhang, and described Poisson isomorphisms between their truncated semiclassical degenerations and the functions Slodowy slices associated with even nilpotent elements in classical simple Lie algebras( which can be viewed as semiclassical W-algebras). I will also mention a work in progress with Lu-Peng-Topley-Wang which deals with the quantum analogue of our theorem.
I will also recall what Poisson algebras and (filtered) quantizations are and give a brief intro to Slodowy slices, finite W-algebras and Yangians so that the talk should be quite accessible.
Bernstein–Gelfand–Gelfand (BGG) resolutions and the Grothendieck–Cousin complex both play central roles in modern algebraic geometry and representation theory. The BGG approach provides elegant, combinatorial resolutions for important classes of modules especially those arising in Lie theory; while Grothendieck–Cousin complexes furnish a powerful framework for computing local cohomology via filtrations by support. In this talk, we will give an overview of these two constructions and illustrate how they arise from the same categorical consideration.
We begin with the Fontaine--Wintenberger isomorphism, which gives an example of an extension of Qp and of Fp((t)) with isomorphic absolute Galois groups. We explain how by trying to lift maps on mod p reductions one encounters Witt vectors. Next, by trying to apply the theory of Witt vectors to the two extensions, we encounter the idea of tilting. Perfectoid fields are then defined more-or-less so that tilting may be reversed. We indicate the proof of the tilting correspondence for perfectoid fields following the Witt vectors approach, classifying the untilts of a given characteristic p perfectoid field along the way. To end, we touch upon the Fargues--Fontaine curve and the geometrization of l-adic local Langlands as motivation for globalizing the tilting correspondence to perfectoid spaces.
The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary Term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.
In ’95 Lusztig gave a local Langlands correspondence for unramified representations of inner to split adjoint groups combining many deep results from type theory and geometric representation theory. In this talk I will present a gentle reformulation of his construction revealing some interesting new structures, and with a view toward proving functoriality results in this framework.
A non-nilpotent graph Γ(G) of a finite group G has elements of G as vertices, with x and y joined by an edge iff a subgroup generated by these two elements is non-nilpotent. During the talk we will prove several (often unrelated) properties of this construction; for instance, any simple graph can be found as an induced subgraph of Γ(G) for some (solvable) group G. The talk is based on my article "A few remarks on the theory of non-nilpotent graphs" (May 2023).
After recalling how Hecke algebras occur in the representation theory of reductive groups, we will introduce affine Hecke algebras through a combinatorial object called a root datum. Through a worked example we will construct a filtration on the affine Hecke algebra from which we obtain the graded Hecke algebra. This has a role analogous to the Lie algebra of an algebraic group.
We will discuss star operations on these rings, with a view towards the classical problem of studying unitary representations of reductive groups.
The Bruhat-Tits building is a crucial combinatorial tool in the study of reductive p-adic groups and their representation theory. Given a p-adic group, its Bruhat-Tits building is a simplicial complex upon which it acts with remarkable properties. In this talk I will give an introduction to the Bruhat-Tits building by sketching its definition and going over some of its basic properties. I will then show the usefulness of the Bruhat-Tits by determining the maximal compact subgroups of a p-adic group up to conjugacy by using the Bruhat-Tits building.
The Junior Algebra and Representation Theory Seminar will kick-off the start of the academic year with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.
Let F be a p-adic field. In this talk I'll study the Om(F)-distinction of some specific principal series representations of Glm(F). The main goal is to give a computing method to see if those representations are distinguished or not so we can also explicitly find a non zero Om(F)-equivariant linear form. This linear form will be given by the integral of the representation's matrix coefficient over Om(F).
After explaining on what specific principal series representations I'm working and why I need those specificities, I'll explain the different steps to compute the integral of my representation's matrix coefficient over Om(F). I'll explicitly give the obtained result for the case m=3. After that I'll explain an asymptotic result we can obtain when we can't compute the integral explicitly.
It is well-known that the set of irreducible (finite-dimensional) representations of a semisimiple complex Lie algebra g can be indexed by the dominant weights. The Borel-Weil theorem asserts that they can be seen geometrically as the global sections of line bundles over the flag variety. The Borel-Weil-Bott theorem computes the higher sheaf cohomology groups. There are several ways to prove the Borel-Weil-Bott theorem, which we will discuss. The classical idea is to study how the Casimir operator acts on the sheaf of sections of line bundles. Instead of this, the geometric idea is trying to compute the Doubeault cohomology, transferring the sheaf cohomology to the Lie algebra cohomology. The algebraic idea is to realize that the sheaf cohomology group can be computed by the derived functor of the induction, by using the Peter-Weyl the Borel-Weil theorem can be shown immediately.
Choose your favourite connected graph $\Delta$ and shade a subset $J$ of its vertices. The intersection arrangement associated to the data $(\Delta, J)$ is a collection of real hyperplanes in dimension $|Jc|$, first defined by Iyama and Wemyss. This construction involves taking the classical Coxeter arrangement coming from $\Delta$ and then setting all variables indexed by $J$ to be zero. It turns out that for many choices of $J$ the chambers of the intersection arrangement admit a nice combinatorial description, along with a wall crossing rule to pass between them. I will start by making all this precise before discussing my work to classify tilings of the hyperbolic plane arising as intersection arrangements. This has applications to local notions of stability conditions using the tilting theory of contracted preprojective algebras.
The Hecke category first rose to prominence through the proof of the Kazhdan-Lusztig conjecture. Since then, the Hecke category has proven to be a fundamental object in representation theory with many interesting applications to modular representation theory, quantum groups, knot theory, categorification and diagrammatic algebra. This talk aims to give a gentle introduction to the Hecke category. We will first discuss the geometric incarnation of the Hecke category and how it was used to prove the Kazhdan-Lusztig conjecture. Then, we move on to a more modern approach due to Soergel and Elias-Williamson which is purely algebraic, and we will discuss some recent advances in representation theory based on this approach.
Kashiwara’s theory of crystal bases provides a powerful tool for studying representations of quantum groups. Crystal bases retain much of the structural information of their corresponding representations, whilst being far more straightforward and ‘stripped-back’ objects (coloured digraphs). Their combinatorial description often enables us to obtain concrete realizations which shed light on the representations, and moreover turn challenging questions in representation theory into far more tractable problems.
After reviewing the construction and basic theory regarding quantum groups, I will introduce and motivate crystal bases as ‘nice q=0 bases’ for their representations. I shall then present (in both finite and affine types) the construction of Young wall models in the important case of highest weight representations. Time permitting, I will finish by discussing some applications across algebra and geometry.