Forthcoming events in this series


Mon, 28 Oct 2019

14:15 - 15:15
L3

Signature Cumulants and Ordered Partitions

PATRIC BONNIER
(University of Oxford)
Abstract

The sequence of so-called Signature moments describes the laws of many stochastic processes in analogy with how the sequence of moments describes the laws of vector-valued random variables. However, even for vector-valued random variables, the sequence of cumulants is much better suited for many tasks than the sequence of moments. This motivates the study of so-called Signature cumulants. To do so, an elementary combinatorial approach is developed and used to show that in the same way that cumulants relate to the lattice of partitions, Signature cumulants relate to the lattice of so-called "ordered partitions". This is used to give a new characterisation of independence of multivariate stochastic processes.

Mon, 21 Oct 2019

15:45 - 16:45
L3

Fatou's Lemmas for Varying Probabilities and their Applications to Sequential Decision Making

EUGENE FEINBERG
(Stony Brook University)
Abstract

The classic Fatou lemma states that the lower limit of expectations is greater or equal than the expectation of the lower limit for a sequence of nonnegative random variables. This talk describes several generalizations of this fact including generalizations to converging sequences of probability measures. The three types of convergence of probability measures are considered in this talk: weak convergence, setwise convergence, and convergence in total variation. The talk also describes the Uniform Fatou Lemma (UFL) for sequences of probabilities converging in total variation. The UFL states the necessary and sufficient conditions for the validity of the stronger inequality than the inequality in Fatou's lemma. We shall also discuss applications of these results to sequential optimization problems with completely and partially observable state spaces. In particular, the UFL is useful for proving weak continuity of transition probabilities for posterior state distributions of stochastic sequences with incomplete state observations known under the name of Partially Observable Markov Decision Processes. These transition probabilities are implicitly defined by Bayes' formula, and general method for proving their continuity properties have not been available for long time. This talk is based on joint papers with Pavlo Kasyanov, Yan Liang, Michael Zgurovsky, and Nina Zadoianchuk.

Mon, 21 Oct 2019

14:15 - 15:15
L3

Variational Inference in Gaussian processes

JAMES HENSMAN
(Prowler.io)
Abstract

 Gaussian processes are well studied object in statistics and mathematics. In Machine Learning, we think of Gaussian processes as prior distributions over functions, which map from the index set to the realised path. To make Gaussian processes a practical tool for machine learning, we have developed tools around variational inference that allow for approximate computation in GPs leveraging the same hardware and software stacks that support deep learning. In this talk I'll give an overview of variational inference in GPs, show some successes of the method, and outline some exciting direction of potential future work.

Mon, 14 Oct 2019

15:45 - 16:45
L3

Entrance and exit at infinity for stable jump diffusions

ANDREAS KYPRIANOU
(University of Bath)
Abstract

Description:In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for jump diffusions driven by a stable process.Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the these processes have features not observes in the diffusion setting. We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for Lévy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of Lévy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.

 
Mon, 14 Oct 2019

14:15 - 15:15
L3

Optimal control of stochastic evolution equations via randomisation and backward stochastic differential equations.

MARCO FUHRMAN
(University of Milan)
Abstract

Backward Stochastic Differential Equations (BSDEs) have been successfully applied  to represent the value of optimal control problems for controlled

stochastic differential equations. Since in the classical framework several restrictions on the scope of applicability of this method remained, in recent times several approaches have been devised to obtain the desired probabilistic representation in more general situations. We will review the so called  randomization method, originally introduced by B. Bouchard in the framework of optimal switching problems, which consists in introducing an auxiliary,`randomized'' problem with the same value as the original one, where the control process is replaced by an exogenous random point process,and optimization is performed over a family of equivalent probability measures. The value of the randomized problem is then represented

by means of a special class of BSDEs with a constraint on one of the unknown processes.This methodology will be applied in the framework of controlled evolution equations (with immediate applications to controlled SPDEs), a case for which very few results are known so far.