Past Amplitude Workshop

28 June 2021
11:30
Marko Berghoff
Abstract

I will present work in progress with Erik Panzer, Matteo Parisi and Ömer Gürdoğan on the analytic structure of Feynman(esque) integrals: We consider integrals of meromorphic differential forms over relative cycles in a compact complex manifold, the underlying geometry encoded in a certain (parameter dependant) subspace arrangement (e.g. Feynman integrals in their parametric representation). I will explain how the analytic struture of such integrals can be studied via methods from differential topology; this is the seminal work by Pham et al (using tools and methods developed by Leray, Thom, Picard-Lefschetz etc.). Although their work covers a very general setup, the case we need for Feynman integrals has never been worked out in full detail. I will comment on the gaps that have to be filled to make the theory work, then discuss how much information about the analytic structure of integrals can be derived from a careful study of the corresponding subspace arrangement.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

15 June 2021
10:00
Abstract

Event shape observables describe how energy is distributed in the final state in scattering processes. Recent years have seen increasing interest from different physics areas in event shapes, in particular the energy correlators. They define a class of observable quantities which admit a simple and unified formulation in quantum  field theory.

Three-point energy correlators (EEEC) measure the energy flow through three detectors as a function of the three angles between them. We analytically compute the one-loop EEEC in maximally supersymmetric Yang-Mills theory. The result is a linear combination of logarithms and dilogarithms, decomposed onto a basis of single-valued transcendental functions. Its symbol contains 16 alphabet letters, revealing a dihedral symmetry of the three-point event shape.  Our results represent the first perturbative computation of a three-parameter event-shape observable, providing information on the function space at higher-loop order, and valuable input to the study of conformal light-ray OPE.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

1 June 2021
15:30
Matteo Parisi
Abstract

In this talk I will discuss a striking duality, T-duality, we discovered between two seemingly unrelated objects: the hypersimplex and the m=2 amplituhedron. We draw novel connections between them and prove many new properties. We exploit T-duality to relate their triangulations and generalised triangles (maximal cells in a triangulation). We subdivide the amplituhedron into chambers as the hypersimplex can be subdivided into simplices - both enumerated by Eulerian numbers. Along the way, we prove several conjectures on the amplituhedron and find novel cluster-algebraic structures, e.g. a generalisation of cluster adjacency.

This is based on the joint work with Lauren Williams and Melissa Sherman-Bennett https://arxiv.org/abs/2104.08254.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

18 May 2021
16:00
Ana Maria Raclariu
Abstract

The 4D 4-point scattering amplitude of massless scalars via a massive exchange can be expressed in a basis of conformal primary particle wavefunctions. In this talk I will show that the resulting celestial amplitude admits a decomposition as a sum over 2D conformal blocks. This decomposition is obtained by contour deformation upon expanding the celestial amplitude in a basis of conformal partial waves. The conformal blocks include intermediate exchanges of spinning light-ray states, as well as scalar states with positive integer conformal weights. The conformal block prefactors are found as expected to be quadratic in the celestial OPE coefficients. Finally, I will comment on implications of this result for celestial holography and discuss some open questions.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

4 May 2021
16:00
Xinan Zhou
Abstract

In this talk, I will discuss AdS super gluon scattering amplitudes in various spacetime dimensions. These amplitudes are dual to correlation functions in a variety of non-maximally supersymmetric CFTs, such as the 6d E-string theory, 5d Seiberg exceptional theories, etc. I will introduce a powerful method based on symmetries and consistency conditions, and show that it fixes all the infinitely many four-point amplitudes at tree level. I will also point out many interesting properties and structures of these amplitudes, which include the flat space limit, Parisi-Sourlas-like dimensional reduction, hidden conformal symmetry, and a color-kinematic duality in AdS. Along the way, I will also review some earlier progress and the relation with this work. I will conclude with a brief discussion of various open problems. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

23 March 2021
16:00
Aidan Herderschee
Abstract
I will give an introduction to the connection between the positive kinematic region and the analytic structure of integrated amplitudes in $\mathcal{N}=4$ SYM at all loop orders. I will first review known results for 6-point and 7-point amplitudes and how cluster algebras provide a very precise understanding of the positive kinematic region. I will then move onto 8-point amplitudes, where a number of phenomena appear not suited to the cluster algebra framework. For example, logarithmic branch points associated with algebraic functions appear at two loops in the 8-point NMHV amplitude. I argue that wall-crossing is a good framework to systematically study these algebraic branch points. Wall crossing has appeared in a number of research areas, most notably in study of moduli spaces of $\mathcal{N}=2$ gauge theories and the BDS ansatz.  In the context of $\mathcal{N}=4$ SYM, we see that wall crossing provides a new way to systematically study the boundary structure of the positive kinematic region. I conclude with a list of results for the 8-point amplitude. 
 
This talk will focus mostly on Sections 1 and 2 of 2102.03611. I will give a brief summary of Section 3 at the end of the talk

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

23 February 2021
16:00
Julian Miczajka
Abstract

In this talk I review the recent discovery of Yangian symmetry for massive Feynman integrals and how it can be used to set up a Yangian Bootstrap. I will provide elementary proofs of the symmetry at one and two loops, whereas at generic loop order I conjecture that all graphs cut from regular tilings of the plane with massive propagators on the boundary enjoy the symmetry. After demonstrating how the symmetry may be used to constrain the functional form of Feynman integrals on explicit examples, I comment on how a subset of the diagrams for which the symmetry is conjectured to hold is naturally embedded in a Massive Fishnet theory that descends from gamma-deformed Coulomb branch N=4 Super-Yang-Mills theory in a particular double scaling limit.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

26 January 2021
16:00
Abstract

Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this talk we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C.Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

24 November 2020
14:30
Stefano Negro

Further Information: 

Please contact Erik Panzer or Ömer Gürdoğan to be added to the mailing list and receive joining instructions to the online seminar.

Abstract

In this talk I will review the work that has been done by me, N. Gromov, V. Kazakov, G. Korchemsky and G. Sizov on the analysis of fishnet Feynman graphs in a particular scaling limit of $\mathcal N=4$ SYM, a theory dubbed $\chi$FT$_4$. After introducing said theory, in which the Feynman graphs take a very simple fishnet form — in the planar limit — I will review how to exploit integrable techniques to compute these graphs and, consequently, extract the anomalous dimensions of a simple class of operators.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

10 November 2020
10:00
Song He

Further Information: 

Please contact Erik Panzer or Ömer Gürdoğan to be added to the mailing list and receive joining instructions to the online seminar.

Abstract

I will review recent works on geometries underlying scattering amplitudes of (certain generalizations of) particles and strings  Tree amplitudes of a cubic scalar theory are given by "canonical forms" of the so-called ABHY associahedra defined in kinematic space. The latter can be naturally extended to generalized associahedra for finite-type cluster algebra, and for classical types their canonical forms give scalar amplitudes through one-loop order. We then consider vast generalizations of string amplitudes dubbed “stringy canonical forms”, and in particular "cluster string integrals" for any Dynkin diagram, which for type A reduces to usual string amplitudes. These integrals enjoy remarkable factorization properties at finite $\alpha'$, obtained simply by removing nodes of the Dynkin diagram; as $\alpha'\rightarrow 0$ they reduce to canonical forms of generalized associahedra, or the aforementioned tree and one-loop scalar amplitudes.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Pages