Forthcoming events in this series


Tue, 15 May 2007
17:00
L1

TBA

Tue, 08 May 2007
17:00
L1

Cluster algebra structures on co-ordinate ring of flag varieties

Prof. Bernard Leclerc
(Caen)
Abstract
  Let G be a complex semisimple algebraic group of type A,D,E. Fomin and Zelevinsky conjecture that the coordinate rings of many interesting varieties attached to G have a natural cluster algebra structure. In a joint work with C. Geiss and J. Schroer we realize part of this program by introducing a cluster structure on the multi-homogeneous coordinate ring of G/P for any parabolic subgroup P of G. This was previously known only for P = B a Borel (Berenstein-Fomin-Zelevinsky) and when G/P is a grassmannian Gr(k,n) (J. Scott). We give a classification of all pairs (G,P) for which this cluster algebra has finite type. Our construction relies on a finite-dimensional algebra attached to G, the preprojective algebra introduced in 1979 by Gelfand and Ponomarev. We use the fact that the coordinate ring of the unipotent radical of P is "categorified" in a natural way by a certain subcategory of the module category of the preprojective algebra.  
Tue, 27 Feb 2007
17:00
L1

Spectra of Groups

Professor Andrzej Zuk
(Paris & Newton Inst.)
Tue, 31 Oct 2006
17:00
L1

Phan theory

Prof. S. Shpectorov
(University of Birmingham)
Tue, 25 Apr 2006
17:00
L1

GSO Groups

Prof. Michael Vaughan-Lee
(Oxford)
Tue, 08 Nov 2005
17:00
L1

Counting lattices in semi-simple Lie groups

Dr Mikhail Belolipetsky
(Durham)
Abstract

My lecture is based on results of [1] and [2]. In [1] we use an extension of the method due to Borel and Prasad to determine the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group. In [2] the results of [1] are combined with the previously known asymptotic of the number of subgroups in a given lattice in order to study the general lattice growth. We show that for many high-rank simple Lie groups (and conjecturally for all) the rate of growth of lattices of covolume at most $x$ is like $x^{\log x}$ and not $x^{\log x/ \log\log x}$ as it was conjectured before. We also prove that the

conjecture is still true (again for "most" groups) if one restricts to counting non-uniform lattices. A crucial ingredient of the argument in [2] is the existence of towers of field extensions with bounded root discriminant which follows from the seminal work of Golod and Shafarevich on class field towers.

I plan to give an overview of these recent results and discuss some ideas beyond the proofs.

[1] M. Belolipetsky (with an appendix by J. Ellenberg and A.

Venkatesh), Counting maximal arithmetic subgroups, arXiv:

math.GR/0501198.

[2] M. Belolipetsky, A. Lubotzky, Class field towers and subgroup

growth, work in progress.

Tue, 25 Oct 2005
17:00
L1

tba

Dr Mario Nardone
(Oxford)
Tue, 24 May 2005
17:00
L1

TBA

Prof. Yuri Bahturin