I will explain the notion of a singular ring and sketch how singular rings provide field and vertex algebras introduced by Borcherds and Kac. All of these notions make sense in general symmetric monoidal categories and behave nicely with respect to symmetric lax monoidal functors. I will provide a complete classification of singular rings if the tensor product is a cartesian product. This applies in particular to categories of topological spaces or (algebraic) stacks equipped with the usual cartesian product. Moduli spaces provide a rich source of examples of singular rings. By combining these ideas, we obtain vertex and field algebras for each reasonable moduli space and each choice of an orientable homology theory. This generalizes a recent construction of vertex algebras by Dominic Joyce.

# Past Algebraic Geometry Seminar

Polar classes are very classical objects in Algebraic Geometry. A brief introduction to the subject will be presented and ideas and preliminarily results towards generalisations will be explained. These ideas can be applied towards variety sampling and relevant applications.

Not much is known about the Chow rings of moduli spaces of abelian varieties or more general Shimura varieties. The tautological ring of a Shimura variety of Hodge type is a subring of its Chow ring containing many "interesting" classes. I will talk about joint work with Torsten Wedhorn on this ring as well as its characteristic p variant. The later is strongly related to the question of understanding the cycle classes of Ekedahl-Oort strata in the Chow ring.

The (total) Steenrod square is a ring homomorphism from the cohomology of a topological space to the Z/2-equivariant cohomology of this space, with the trivial Z/2-action. Given a closed monotone symplectic manifold, one can define a deformed notion of the Steenrod square for quantum cohomology, which will not in general be a ring homomorphism, and prove some properties of this operation that are analogous to properties of the classical Steenrod square. We will then link this, in a more general setting, to a definition by Seidel of a similar operation on Floer cohomology.

The Hitchin fibration is a natural tool through which one can understand the moduli space of Higgs bundles and its interesting subspaces (branes). After reviewing the type of questions and methods considered in the area, we shall dedicate this talk to the study of certain branes which lie completely inside the singular fibres of the Hitchin fibrations. Through Cayley and Langlands type correspondences, we shall provide a geometric description of these objects, and consider the implications of our methods in the context of representation theory, Langlands duality, and within a more generic study of symmetries on moduli spaces.

Combining work of Galkin, Christopherson-Ilten, and Coates-Corti-Galkin-Golyshev-Kasprzyk we see that all smooth Fano threefolds admit a toric degeneration. We can use this fact to uniformly construct all Fano threefolds: given a choice of a fan we classify reflexive polytopes which break into unimodular pieces along this fan. We can then construct closed torus invariant embeddings of the corresponding toric variety using a technique - Laurent inversion - developed with Coates and Kaspzryk. The corresponding binomial ideal is controlled by the chosen fan, and in low enough codimension we can explicitly test deformations of this toric ideal. We relate the constructions we obtain to known constructions. We study the simplest case of the above construction, closely related to work of Abouzaid-Auroux-Katzarkov, in arbitrary dimension and use it to produce a tropical interpretation of the mirror superpotential via broken lines. We expect the computation to be the tropical analogue of a Floer theory calculation.

I will talk about some basic facts about slope stable sheaves and the Bogomolov inequality. New techniques from stability conditions will imply new stronger bounds on Chern characters of stable sheaves on some special varieties, including Fano varieties, quintic threefolds and etc. I will discuss the progress in this direction and some related open problems.