Forthcoming events in this series


Fri, 23 May 2025

16:00 - 17:00
L1

From Physics-Informed Machine Learning to Physics-Informed Machine Intelligence: Quo Vadimus?

Prof. George Em Karniadakis
(Brown University)
Further Information

The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics, Brown University;
Also @MIT & Pacific Northwest National Laboratory 

https://sites.brown.edu/crunch-group/

 

George Karniadakis is from Crete. He is an elected member of the National Academy of Engineering, member of the American Academy of Arts and Sciences, and a Vannevar Bush Faculty Fellow. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. 

He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continued to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the SES GI Taylor Medal (2024), the SIAM/ACM Prize on Computational Science & Engineering (2021), the Alexander von Humboldt award in 2017, the SIAM Ralf E Kleinman award (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 150 and he has been cited over 130,000 times.

 

Abstract

We will review physics-informed neural networks (NNs) and summarize available extensions for applications in computational science and engineering. We will also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification. 

These two key developments have formed the backbone of scientific machine learning that has disrupted the path of computational science and engineering and has created new opportunities for all scientific domains. We will discuss some of these opportunities in digital twins, autonomy, materials discovery, etc.

Moreover, we will discuss bio-inspired solutions, e.g., spiking neural networks and neuromorphic computing.

 

 

Fri, 14 Mar 2025
16:00
L1

$p$-Adic Variation in the Theory of Automorphic Forms

Glenn Stevens
(Boston University)
Abstract

This will be an expository lecture intended for a general mathematical audience to illustrate, through examples, the theme of $p$-adic variation in the classical theory of modular forms.  Classically, modular forms are complex analytic objects, but because their Fourier coefficients are typically integral, it is possible to also do elementary arithmetic with them.   Early examples arose already in the work of Ramanujan.  Today one knows that modular forms encode deep arithmetic information about elliptic curves and Galois representations.  Our main goal will be to illustrate these ideas through simple concrete examples.   



 

Fri, 07 Feb 2025
16:00
L1

Introduction to geometric Langlands

Dennis Gaitsgory
(MPI Bonn)
Abstract
I'll explain the evolution of the ideas that led to geometric Langlands from the
historical perspective.
Thu, 05 Dec 2024

16:00 - 17:00
L1

The Art of Cancer Modelling

Prof. Mark Chaplain
(University of St. Andrews)
Further Information

Mark Chaplain is the Gregory Chair of Applied Mathematics at the University of St. Andrews. 

Here's a little about his research from the St. Andrews website:

Research areas

Cancer is one of the major causes of death in the world, particularly the developed world, with around 11 million people diagnosed and around 9 million people dying each year. The World Health Organisation (WHO) predicts that current trends show the number rising to 11.5 million in 2030. There are few individuals who have not been touched either directly or indirectly by cancer. While treatment for cancer is continually improving, alternative approaches can offer even greater insight into the complexity of the disease and its treatment. Biomedical scientists and clinicians are recognising the need to integrate data across a range of spatial and temporal scales (from genes through cells to tissues) in order to fully understand cancer. 

My main area of research is in what may be called "mathematical oncology" i.e. formulating and analysing  mathematical models of cancer growth and treatment. I have been involved in developing a variety of novel mathematical models for all the main phases of solid tumour growth, namely: avascular solid tumour growth, the immune response to cancer, tumour-induced angiogenesis, vascular tumour growth, invasion and metastasis. 

The main modelling techniques involved are the use and analysis of nonlinear partial and ordinary differential equations, the use of hybrid continuum-discrete models and the development of multiscale models and techniques. 

Much of my current work is focussed on what may be described as a "systems approach" to modelling cancer growth through the development of quantitative and predictive mathematical models. Over the past 5 years or so, I have also helped develop models of chemotherapy treatment of cancer, focussing on cell-cycle dependent drugs, and also radiotherapy treatment. One of the new areas of research I have started recently is in modelling intracellular signalling pathways (gene regulation networks) using partial differential equation models. 

The long-term goal is to build a "virtual cancer" made up of different but connected mathematical models at the different biological scales (from genes to tissue to organ). The development of quantitative, predictive models (based on sound biological evidence and underpinned and parameterised by biological data) has the potential to have a positive impact on patients suffering from diseases such as cancer through improved clinical treatment.

Further details of my current research can be found at the Mathematical Biology Research Group web page.

Abstract

In this talk we will provide an overview of a number of mathematical models of cancer growth and development - gene regulatory networks, the immune response to cancer, avascular solid tumour growth, tumour-induced angiogenesis, cancer invasion and metastasis. In the talk we will also discuss (the art of) mathematical modelling itself giving illustrations and analogies from works of art. 

 

 

Fri, 09 Aug 2024
16:00
L1

Topology and the Curse of Dimensionality

Gunnar Carlsson
(Stanford University)
Abstract

The "curse of dimensionality" refers to the host of difficulties that occur when we attempt to extend our intuition about what happens in low dimensions (i.e. when there are only a few features or variables)  to very high dimensions (when there are hundreds or thousands of features, such as in genomics or imaging).  With very high-dimensional data, there is often an intuition that although the data is nominally very high dimensional, it is typically concentrated around a much lower dimensional, although non-linear set. There are many approaches to identifying and representing these subsets.  We will discuss topological approaches, which represent non-linear sets with graphs and simplicial complexes, and permit the "measuring of the shape of the data" as a tool for identifying useful lower dimensional representations.

Fri, 14 Jun 2024
16:00
L1

From Group Theory to Post-quantum Cryptography

Delaram Kahrobaei
(City University, New York)
Abstract

The goal of Post-Quantum Cryptography (PQC) is to design cryptosystems which are secure against classical and quantum adversaries. A topic of fundamental research for decades, the status of PQC drastically changed with the NIST PQC standardization process. Recently there have been AI attacks on some of the proposed systems to PQC. In this talk, we will give an overview of the progress of quantum computing and how it will affect the security landscape. 

Group-based cryptography is a relatively new family in post-quantum cryptography, with high potential. I will give a general survey of the status of post-quantum group-based cryptography and present some recent results.

In the second part of my talk, I speak about Post-quantum hash functions using special linear groups with implication to post-quantum blockchain technologies.

Fri, 07 Jun 2024

16:00 - 17:00
L1

Fluid flow and elastic flexure – mathematical modelling of the transient response of ice sheets in a changing climate CANCELLED

Prof Jerome Neufeld
(University of Cambridge)
Further Information

Jerome A. Neufeld

Professor of Earth and Planetary Fluid Dynamics
Centre for Environmental and Industrial Flows
Department of Earth Sciences
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
 

Research interests: The research in the Earth and Planetary Fluid Dynamics group focuses on using mathematical models and laboratory experiments to understand the fluid behaviour of the Earth and other planetary bodies. Current research interests include the consequences of subglacial hydrology on supraglacial lake drainage and the tidal modulation of ice streams, the solidification of magma oceans and the early generation of magnetic fields on planetary bodies, the erosive dynamics of idealised river systems, the emplacement and solidification of magmatic flows, viscous tectonic mountain building, and the general fluid dynamics of geological carbon storage.

Abstract

The response of the Greenland and Antarctic ice sheets to a changing climate is one of the largest sources of uncertainty in future sea level predictions.  The behaviour of the subglacial environment, where ice meets hard rock or soft sediment, is a key determinant in the flux of ice towards the ocean, and hence the loss of ice over time.  Predicting how ice sheets respond on a range of timescales brings together mathematical models of the elastic and viscous response of the ice, subglacial sediment and water and is a rich playground where the simplified models of the contact between ice, rock and ocean can shed light on very large scale questions.  In this talk we’ll see how these simplified models can make sense of a variety of field and laboratory data in order to understand the dynamical phenomena controlling the transient response of large ice sheets.

 

Fri, 01 Dec 2023

16:00 - 17:00
L1

Elliptic curves and modularity

Ana Caraiani
(Imperial College London and University of Bonn)
Abstract

The goal of this talk is to give you a glimpse of the Langlands program, a central topic at the intersection of algebraic number theory, algebraic geometry and representation theory. I will focus on a celebrated instance of the Langlands correspondence, namely the modularity of elliptic curves. In the first part of the talk, I will give an explicit example, discuss the different meanings of modularity for rational elliptic curves, and mention applications. In the second part of the talk, I will discuss what is known about the modularity of elliptic curves over more general number fields.

Fri, 03 Nov 2023
16:00
L1

Algebraic geometry tools in systems biology

Alicia Dickenstein
(University of Buenos Aires)
Abstract

In recent years, methods and concepts of algebraic geometry, particularly those of real and computational algebraic geometry, have been used in many applied domains. In this talk, aimed at a broad audience, I will review applications to molecular biology. The goal is to analyze standard models in systems biology to predict dynamic behavior in regions of parameter space without the need for simulations. I will also mention some challenges in the field of real algebraic geometry that arise from these applications.

Fri, 20 Oct 2023

16:00 - 17:00
L1

Generalized Tensor Decomposition: Utility for Data Analysis and Mathematical Challenges

Tamara Kolda
(MathSci.ai)
Further Information

Tamara Kolda is an independent mathematical consultant under the auspices of her company MathSci.ai based in California. From 1999-2021, she was a researcher at Sandia National Laboratories in Livermore, California. She specializes in mathematical algorithms and computation methods for tensor decompositions, tensor eigenvalues, graph algorithms, randomized algorithms, machine learning, network science, numerical optimization, and distributed and parallel computing.

From the website: https://www.mathsci.ai/

Abstract

Tensor decomposition is an unsupervised learning methodology that has applications in a wide variety of domains, including chemometrics, criminology, and neuroscience. We focus on low-rank tensor decomposition using  canonical polyadic or CANDECOMP/PARAFAC format. A low-rank tensor decomposition is the minimizer according to some nonlinear program. The usual objective function is the sum of squares error (SSE) comparing the data tensor and the low-rank model tensor. This leads to a nicely-structured problem with subproblems that are linear least squares problems which can be solved efficiently in closed form. However, the SSE metric is not always ideal. Thus, we consider using other objective functions. For instance, KL divergence is an alternative metric is useful for count data and results in a nonnegative factorization. In the context of nonnegative matrix factorization, for instance, KL divergence was popularized by Lee and Seung (1999). We can also consider various objectives such as logistic odds for binary data, beta-divergence for nonnegative data, and so on. We show the benefits of alternative objective functions on real-world data sets. We consider the computational of generalized tensor decomposition based on other objective functions, summarize the work that has been done thus far, and illuminate open problems and challenges. This talk includes joint work with David Hong and Jed Duersch.

Mon, 12 Jun 2023

16:00 - 17:00
L1

Fourier transform as a triangular matrix

George Lusztig
(MIT)
Abstract

Let $V$ be a finite dimensional vector space over the field with two elements with a given nondegenerate symplectic form. Let $[V]$ be the vector space of complex valued functions on $V$ and let $[V]_{\mathbb Z}$ be the subgroup of $[V]$ consisting of integer valued functions. We show that there exists a Z-basis of $[V]_{\mathbb Z}$ consisting of characteristic functions of certain explicit isotropic subspaces of $V$ such that the matrix of the Fourier transform from $[V]$ to $[V]$ with respect to this basis is triangular. This continues the tradition started by Hermite who described eigenvectors for the Fourier transform over real numbers.

Fri, 10 Feb 2023
16:00
L1

Mathematical models of curiosity

Professor Dani S Bassett
(J. Peter Skirkanich Professor, University of Pennsylvania)
Further Information

Dani Smith Bassett is an American physicist and systems neuroscientist who was the youngest individual to be awarded a 2014 MacArthur fellowship.

Bassett, whose pronouns are they/them,was also awarded a 2014 Sloan fellowship. They are currently the J. Peter Skirkanich Professor in the Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, Neurology, and Psychiatry at the University of Pennsylvania and an external professor of the Santa Fe Institute. Their work focuses on applying network science to the study of learning in the human brain in addition to the study of other complex physical and biological systems.

Wikipedia

Abstract

What is curiosity? Is it an emotion? A behavior? A cognitive process? Curiosity seems to be an abstract concept—like love, perhaps, or justice—far from the realm of those bits of nature that mathematics can possibly address. However, contrary to intuition, it turns out that the leading theories of curiosity are surprisingly amenable to formalization in the mathematics of network science. In this talk, I will unpack some of those theories, and show how they can be formalized in the mathematics of networks. Then, I will describe relevant data from human behavior and linguistic corpora, and ask which theories that data supports. Throughout, I will make a case for the position that individual and collective curiosity are both network building processes, providing a connective counterpoint to the common acquisitional account of curiosity in humans.

 

 

Fri, 20 Jan 2023

16:00 - 17:00
L1

Prime numbers: Techniques, results and questions

James Maynard
(Oxford University )
Abstract

The basic question in prime number theory is to try to understand the number of primes in some interesting set of integers. Unfortunately many of the most basic and natural examples are famous open problems which are over 100 years old!

We aim to give an accessible survey of (a selection of) the main results and techniques in prime number theory. In particular we highlight progress on some of these famous problems, as well as a selection of our favourite problems for future progress.

Fri, 02 Dec 2022

16:00 - 17:00
L1

Strong cosmic censorship versus Λ

Mihalis Dafermos
(Cambridge)
Abstract

The strong cosmic censorship conjecture is a fundamental open problem in classical general relativity, first put forth by Roger Penrose in the early 70s. This is essentially the question of whether general relativity is a deterministic theory. Perhaps the most exciting arena where the validity of the conjecture is challenged is the interior of rotating black holes, and there has been a lot of work in the past 50 years in identifying mechanisms ensuring that at least some formulation of the conjecture be true. It turns out that when a nonzero cosmological constant Λ is added to the Einstein equations, these underlying mechanisms change in an unexpected way, and the validity of the conjecture depends on a detailed understanding of subtle aspects of black hole scattering theory, surprisingly involving, in the case of negative Λ, some number theory. Does strong cosmic censorship survive the challenge of non-zero Λ? This talk will try to address this Question!

Fri, 18 Nov 2022
16:00
L1

Fluid-boundary interaction: confinement effects, stratification and transport

Roberto Camassa
(University of North Carolina)
Further Information

Roberto Camassa is the Kenan Professor of Mathematics in the College of Arts & Sciences, University of North Carolina at Chapel HIll. This year he earned the Society for Industrial and Applied Mathematics’ Kruskal Prize for his work to advance the understanding of nonlinear wave evolution.

 

The colloquium is followed by a drinks reception in the common room.

Abstract

Arguably some of the most interesting phenomena in fluid dynamics, both from a mathematical and a physical perspective, stem from the interplay between a fluid and its boundaries. This talk will present some examples of how boundary effects lead to remarkable outcomes.  Singularities can form in finite time as a consequence of the continuum assumption when material surfaces are in smooth contact with horizontal boundaries of a fluid under gravity. For fluids with chemical solutes, the presence of boundaries impermeable to diffusion adds further dynamics which can give rise to self-induced flows and the formation of coherent structures out of scattered assemblies of immersed bodies. These effects can be analytically and numerically predicted by simple mathematical models and observed in “simple” experimental setups. 

Fri, 27 May 2022

15:00 - 16:00
L2

The nonlinear stability of Kerr for small angular momentum

Sergiu Klainerman
(Princeton)
Abstract

I will report on my most recent results  with Jeremie Szeftel and Elena Giorgi which conclude the proof of the nonlinear, unconditional, stability of slowly rotating Kerr metrics. The main part of the proof, announced last year, was conditional on results concerning boundedness and decay estimates for nonlinear wave equations. I will review the old results and discuss how the conditional results can now be fully established.

Fri, 20 May 2022

16:00 - 17:00
L2

New perspectives for higher-order methods in convex optimisation

Yurii Nesterov
(Universite catholique de louvain)
Further Information

This colloquium is the annual Maths-Stats colloquium, held jointly with the Statistics department.

Abstract
In the recent years, the most important developments in Optimization were related to clarification of abilities of the higher-order methods. These schemes have potentially much higher rate of convergence as compared to the lower-order methods. However, the possibility of their implementation in the form of practically efficient algorithms was questionable during decades. In this talk, we discuss different possibilities for advancing in this direction, which avoid all standard fears on tensor methods (memory requirements, complexity of computing the tensor components, etc.). Moreover, in this way we get the new second-order methods with memory, which converge provably faster than the conventional upper limits provided by the Complexity Theory.
Fri, 24 Jan 2020

16:00 - 17:00
L1

Nonlinear Waves in Granular Crystals: From Modeling and Analysis to Computations and Experiments

Panos Kevrekidis
(University of Massachusetts)
Further Information

The Mathematical Institute Colloquia are funded in part by the generosity of Oxford University Press.

This Colloquium is supported by a Leverhulme Trust Visiting Professorship award.

Abstract

In this talk, we will provide an overview of results in the setting of granular crystals, consisting of spherical beads interacting through nonlinear elastic spring-like forces. These crystals are used in numerous engineering applications including, e.g., for the production of "sound bullets'' or the examination of bone quality. In one dimension we show that there exist three prototypical types of coherent nonlinear waveforms: shock waves, traveling solitary waves and discrete breathers. The latter are time-periodic, spatially localized structures. For each one, we will analyze the existence theory, presenting connections to prototypical models of nonlinear wave theory, such as the Burgers equation, the Korteweg-de Vries equation and the nonlinear Schrodinger (NLS) equation, respectively. We will also explore the stability of such structures, presenting some explicit stability criteria for traveling waves in lattices. Finally, for each one of these structures, we will complement the mathematical theory and numerical computations with state-of-the-art experiments, allowing their quantitative identification and visualization. Finally, time permitting, ongoing extensions of these themes will be briefly touched upon, most notably in higher dimensions, in heterogeneous or disordered chains and in the presence of damping and driving; associated open questions will also be outlined.

Fri, 15 Nov 2019

16:00 - 17:00
L1

Wave localization and its landscape

Doug Arnold
(University of Minnesota)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

Abstract

The puzzling phenonenon of wave localization refers to unexpected confinement of waves triggered by disorder in the propagating medium. Localization arises in many physical and mathematical systems and has many important implications and applications. A particularly important case is the Schrödinger equation of quantum mechanics, for which the localization behavior is crucial to the electrical properties of materials. Mathematically it is tied to exponential decay of eigenfunctions of operators instead of their expected extension throughout the domain. Although localization has been studied by physicists and mathematicians for the better part of a century, many aspects remain mysterious. In particular, the sort of deterministic quantitative results needed to predict, control, and exploit localization have remained elusive. This talk will focus on major strides made in recent years based on the introduction of the landscape function and its partner, the effective potential. We will describe these developments from the viewpoint of a computational mathematician who sees the landscape theory as a completely unorthodox sort of a numerical method for computing spectra.

Fri, 25 Oct 2019

16:00 - 17:00
L1

The Four Dimensional Light Bulb Theorem

David Gabai
(Princeton)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

 

Abstract

We discuss a recent generalization of the classical 3-dimensional light bulb theorem to 4-dimensions. We connect this with fundamental questions about knotting of surfaces in 4-dimensional manifolds as well as new directions regarding knotting of 3-balls in 4-manifolds.

 

 

Fri, 18 Oct 2019

16:00 - 17:00
L1

Geometry as a key to the virosphere: Mathematics as a driver of discovery in virology and anti-viral therapy

Reidun Twarock
(University of York)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

Abstract

Viruses encapsulate their genetic material into protein containers that act akin to molecular Trojan horses, protecting viral genomes between rounds of infection and facilitating their release into the host cell environment. In the majority of viruses, including major human pathogens, these containers have icosahedral symmetry. Mathematical techniques from group, graph and tiling theory can therefore be used to better understand how viruses form, evolve and infect their hosts, and point the way to novel antiviral solutions.

In this talk, I will present an overarching theory of virus architecture, that contains the seminal Caspar Klug theory as a special case and solves long-standing open problems in structural virology. Combining insights into virus structure with a range of different mathematical modelling techniques, such as Gillespie algorithms, I will show how viral life cycles can be better understood through the lens of viral geometry. In particular, I will discuss a recent model for genome release from the viral capsid. I will also demonstrate the instrumental role of the Hamiltonian path concept in the discovery of a virus assembly mechanism that occurs in many human pathogens, such as Picornaviruses – a family that includes the common cold virus– and Hepatitis B and C virus. I will use multi-scale models of a viral infection and implicit fitness landscapes in order to demonstrate that therapeutic interventions directed against this mechanism have advantages over conventional forms of anti-viral therapy. The talk will finish with a discussion of how the new mathematical and mechanistic insights can be exploited in bio-nanotechnology for applications in vaccination and gene therapy.

Thu, 17 Oct 2019

16:00 - 17:00

Simplicity and Complexity of Belief-Propagation

Elchanan Mossel
(MIT)
Further Information

This Colloquium is taking place in the Department of Statistics on St Giles'.

Abstract

There is a very simple algorithm for the inference of posteriors for probability models on trees. This algorithm, known as "Belief Propagation" is widely used in coding theory, in machine learning, in evolutionary inference, among many other areas. The talk will be devoted to the analysis of Belief Propagation in some of the simplest probability models. We will highlight the interplay between Belief Propagation, linear estimators (statistics), the Kesten-Stigum bound (probability) and Replica Symmetry Breaking (statistical physics). We will show how the analysis of Belief Propagation allowed proof phase transitions for phylogenetic reconstruction in evolutionary biology and developed optimal algorithms for inference of block models. Finally, we will discuss the computational complexity of this 'simple' algorithm.

Fri, 14 Jun 2019

16:00 - 17:00
L1

Old and new on crystalline cohomology and the de Rham-Witt complex

Luc Illusie
(Université de Paris-Sud, Orsay)
Abstract

The subject of $p$-adic cohomologies is over fifty years old. Many new developments have recently occurred. I will mostly limit myself to discussing some pertaining to the de Rham-Witt complex. After recalling the historical background and the basic results, I will give an overview of the new approach of Bhatt, Lurie and Mathew.

Fri, 07 Jun 2019
16:00
L1

Optimal control of multiphase fluids and droplets

Michael Hintermueller
(Humboldt)
Abstract

Solidification processes of liquid metal alloys,  bubble dynamics (as in Taylor flows), pinch-offs of liquid-liquid jets, the formation of polymeric membranes, or the structure of high concentration photovoltaic cells are described by the dynamics of multiphase fluids. On the other hand, in applications such as mass spectrometry, lab-on-a-chip, and electro-fluidic displays, fluids on the micro-scale associated with a dielectric medium are of interest. Moreover, in many of these applications one is interested in influencing (or controlling) the underlying phenomenon in order to reach a desired goal. Examples for the latter could be the porosity structure of a polymeric membrane to achieve certain desired filtration properties of the membrane, or to optimize a microfluidic device for the transport of pharmaceutical agents.

A promising mathematical model for the behavior of multiphase flows associated with the applications mentioned above is given by a phase-field model of Cahn-Hilliard / Navier-Stokes (CHNS) type. Some strengths of phase field (or diffuse interface) approaches are due to their ability to overcome both, analytical difficulties of topological changes, such as, e.g., droplet break-ups or the coalescence of interfaces, and numerical challenges in capturing the interface dynamics between the fluid phases. Deep quenches in solidification processes of liquid alloys or rapid wall hardening in the formation of polymer membranes ask for non-smooth energies in connection with Cahn-Hilliard models. Analytically, this gives rise to a variational inequality coupled to the equations of hydrodynamics, thus yielding a non-smooth system (in the sense that the map associated with the underlying operator equation is not necessarily Frechet differentiable). In contrast to phase-field approaches,
one may consider sharp interface models. In view of this, our microfluidic applications alluded to above are formulated in terms of  sharp interface models and Hele-Shaw flows. In this context, we are particularly interested in applications of electrowetting on dielectric (EWOD) with contact line pinning. The latter phenomenon resembles friction, yields a variational inequality of the second kind, and – once again – it results in an overall nonsmooth mathematical model of the physical process.

   In both settings described above, optimal control problems are relevant in order to influence the underlying physical process to approach a desired system state.  The associated optimization problems are delicate as the respective constraints involve non-smooth structures which render the problems degenerate and prevent a direct application of sophisticated tools for the characterization of solutions. Such characterizations are, however, of paramount importance in the design of numerical solution schemes.

This talk addresses some of the analytical challenges associated with optimal control problems involving non-smooth structures, offers pathways to solutions, and it reports on numerical results for both problem classes introduced above.
 

Fri, 08 Mar 2019

16:00 - 17:00
L1

False theta functions and their modular properties CANCELLED

Kathrin Bringmann
(University of Cologne)
Further Information

THIS TALK HAS BEEN CANCELLED

Abstract

In my talk I will discuss modular properties of false theta functions. Due to a wrong sign factor these are not directly seen to be modular, however there are ways to repair this. I will report about this in my talk.

 

Fri, 16 Nov 2018

15:00 - 16:00
L1

Total positivity: a concept at the interface between algebra, analysis and combinatorics

Alan Sokal
(UCL & NYU)
Abstract

A matrix M of real numbers is called totally positive if every minor of M is nonnegative. This somewhat bizarre concept from linear algebra has surprising connections with analysis - notably polynomials and entire functions with real zeros, and the classical moment problem and continued fractions - as well as combinatorics. I will explain briefly some of these connections, and then introduce a generalization: a matrix M of polynomials (in some set of indeterminates) will be called coefficientwise totally positive if every minor of M is a polynomial with nonnegative coefficients. Also, a sequence (an)n≥0  of real numbers (or polynomials) will be called (coefficientwise) Hankel-totally positive if the Hankel matrix H = (ai+j)i,j ≥= 0 associated to (an) is (coefficientwise) totally positive. It turns out that many sequences of polynomials arising in enumerative combinatorics are (empirically) coefficientwise Hankel-totally positive; in some cases this can be proven using continued fractions, while in other cases it remains a conjecture.

Fri, 02 Nov 2018

16:00 - 17:00
L1

Characteristic Polynomials of Random Unitary Matrices, Partition Sums, and Painlevé V

Jon Keating
(University of Bristol)
Abstract

The moments of characteristic polynomials play a central role in Random Matrix Theory.  They appear in many applications, ranging from quantum mechanics to number theory.  The mixed moments of the characteristic polynomials of random unitary matrices, i.e. the joint moments of the polynomials and their derivatives, can be expressed recursively in terms of combinatorial sums involving partitions. However, these combinatorial sums are not easy to compute, and so this does not give an effective method for calculating the mixed moments in general. I shall describe an alternative evaluation of the mixed moments, in terms of solutions of the Painlevé V differential equation, that facilitates their computation and asymptotic analysis.

Fri, 12 Oct 2018

16:00 - 17:00
L1

Francis Bach - Gossip of Statistical Observations using Orthogonal Polynomials

Francis Bach
(CNRS and Ecole Normale Superieure Paris)
Abstract

Consider a network of agents connected by communication links, where each agent holds a real value. The gossip problem consists in estimating the average of the values diffused in the network in a distributed manner. Current techniques for gossiping are designed to deal with worst-case scenarios, which is irrelevant in applications to distributed statistical learning and denoising in sensor networks. We design second-order gossip methods tailor-made for the case where the real values are i.i.d. samples from the same distribution. In some regular network structures, we are able to prove optimality of our methods, and simulations suggest that they are efficient in a wide range of random networks. Our approach of gossip stems from a new acceleration framework using the family of orthogonal polynomials with respect to the spectral measure of the network graph (joint work with Raphaël Berthier, and Pierre Gaillard).

Fri, 15 Jun 2018

16:00 - 17:00
L2

Alfio Quarteroni - Mathematical and numerical models for heart function

Alfio Quarteroni
(EPFL Lausanne and Politecnico di Milano)
Abstract

Mathematical models based on first principles can describe the interaction between electrical, mechanical and fluid-dynamical processes occurring in the heart. This is a classical multi-physics problem. Appropriate numerical strategies need to be devised to allow for an effective description of the fluid in large and medium size arteries, the analysis of physiological and pathological conditions, and the simulation, control and shape optimisation of assisted devices or surgical prostheses. This presentation will address some of these issues and a few representative applications of clinical interest.

Fri, 08 Jun 2018

16:00 - 17:00
L1

Sir John Ball - Minimization, constraints and defects

Sir John Ball
(University of Oxford)
Abstract

It is at first sight surprising that a minimizer of an integral of the calculus of variations may make the integrand infinite somewhere.

This talk will discuss some examples of this phenomenon, how it can be related to material defects, and related open questions from nonlinear elasticity and the theory of liquid crystals.

Fri, 02 Mar 2018

16:00 - 17:00
L1

What's new in moonshine? CANCELLED

Miranda Cheng
(University of Amsterdam.)
Abstract

The so-called moonshine phenomenon relates modular forms and finite group representations. After the celebrated monstrous moonshine, various new examples of moonshine connection have been discovered in recent years. The study of these new moonshine examples has revealed interesting connections to K3 surfaces, arithmetic geometry, and string theory.  In this colloquium I will give an overview of these recent developments. 
 

Fri, 01 Dec 2017

16:00 - 17:00
L1

New developments in the synthetic theory of metric measure spaces with Ricci curvature bounded from below

Luigi Ambrosio
(Scuola Normale Superiore di Pisa)
Abstract

The theory of metric measure spaces with Ricci curvature from below is growing very quickly, both in the "Riemannian" class RCD and the general  CD one. I will review some of the most recent results, by illustrating the key identification results and technical tools (at the level of calculus in metric measure spaces) underlying these results.
 

Fri, 10 Nov 2017
16:00
L2

QBIOX Colloquium

Professor Paul Riley, Professor Eleanor Stride
Abstract

The fourth QBIOX Colloquium will take place in the Mathematical Institute on Friday 10th November (5th week) and feature talks from Professor Paul Riley (Department of Pathology, Anatomy and Genetics / BHF Oxbridge Centre for Regenerative Medicine, https://www.dpag.ox.ac.uk/research/riley-group) and Professor Eleanor Stride (Institute of Biomedical Engineering, http://www.ibme.ox.ac.uk/research/non-invasive-therapy-drug-delivery/pe…).

1600-1645 - Paul Riley, "Enroute to mending broken hearts".
1645-1730 - Eleanor Stride, "Reducing tissue hypoxia for cancer therapy".
1730-1800 - Networking and refreshments.

We very much hope to see you there. As ever, tickets are not necessary, but registering to attend will help us with numbers for catering.
Please see the following link for further details and a link to register.
https://www.eventbrite.co.uk/e/qbiox-colloquium-michelmas-term-2017-tic…

Abstracts
Paul Riley - "En route to mending broken hearts".
We adopt the paradigm of understanding how the heart develops during pregnancy as a first principal to inform on adult heart repair and regeneration. Our target for cell-based repair is the epicardium and epicardium-derived cells (EPDCs) which line the outside of the forming heart and contribute vascular endothelial and smooth muscle cells to the coronary vasculature, interstitial fibroblasts and cardiomyocytes. The epicardium can also act as a source of signals to condition the growth of the underlying embryonic heart muscle. In the adult heart, whilst the epicardium is retained, it is effectively quiescent. We have sought to extrapolate the developmental potential of the epicardium to the adult heart following injury by stimulating dormant epicardial cells to give rise to new muscle and vasculature. In parallel, we seek to modulate the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents cell engraftment and integration with survived heart tissue. To this end we manipulate the lymphatic vessels in the heart given that, elsewhere in the body, the lymphatics survey the immune system and modulate inflammation at peripheral injury sites. We recently described the development of the cardiac lymphatic vasculature and revealed in the adult heart that they undergo increased vessel sprouting (lymphangiogenesis) in response to injury, to improve function, remodelling and fibrosis. We are currently investigating whether increased lymphangiogenesis functions to clear immune cells and constrain the reparative response for optimal healing. 

Eleanor Stride - "Reducing tissue hypoxia for cancer therapy"
Hypoxia, i.e. a reduction in dissolved oxygen concentration below physiologically normal levels, has been identified as playing a critical role in the progression of many types of disease and as a key determinant of the success of cancer treatment. It poses a particular challenge for treatments such as radiotherapy, photodynamic and sonodynamic therapy which rely on the production of reactive oxygen species. Strategies for treating hypoxia have included the development of hypoxia-selective drugs as well as methods for directly increasing blood oxygenation, e.g. hyperbaric oxygen therapy, pure oxygen or carbogen breathing, ozone therapy, hydrogen peroxide injections and administration of suspensions of oxygen carrier liquids. To date, however, these approaches have delivered limited success either due to lack of proven efficacy and/or unwanted side effects. Gas microbubbles, stabilised by a biocompatible shell have been used as ultrasound contrast agents for several decades and have also been widely investigated as a means of promoting drug delivery. This talk will present our recent research on the use of micro and nanobubbles to deliver both drug molecules and oxygen simultaneously to a tumour to facilitate treatment.

Fri, 20 Oct 2017

16:00 - 17:00

Robert Calderbank - the Art of Signaling

Robert Calderbank
(Duke University)
Abstract

Coding theory revolves around the question of what can be accomplished with only memory and redundancy. When we ask what enables the things that transmit and store information, we discover codes at work, connecting the world of geometry to the world of algorithms.

This talk will focus on those connections that link the real world of Euclidean geometry to the world of binary geometry that we associate with Hamming.

Fri, 20 Oct 2017
14:30
L1

Peter Sarnak - Integer points on affine cubic surfaces

Peter Sarnak
(Princeton University)
Abstract

A cubic polynomial equation in four or more variables tends to have many integer solutions, while one in two variables has a limited number of such solutions. There is a body of work establishing results along these lines. On the other hand very little is known in the critical case of three variables. For special such cubics, which we call Markoff surfaces, a theory can be developed. We will review some of the tools used to deal with these and related problems.

Joint works with Bourgain/Gamburd and with Ghosh
 

Fri, 09 Jun 2017

16:00 - 17:00
L1

The cover of the December AMS Notices

Caroline Series
(University of Warwick)
Abstract

The cover of the December 2016 AMS Notices shows an eye-like region picked out by blue and red dots and surrounded by green rays. The picture, drawn by Yasushi Yamashita, illustrates Gaven Martin’s search for the smallest volume 3-dimensional hyperbolic orbifold. It represents a family of two generator groups of isometries of hyperbolic 3-space which was recently studied, for quite different reasons, by myself, Yamashita and Ser Peow Tan.

After explaining the coloured dots and their role in Martin’s search, we concentrate on the green rays. These are Keen-Series pleating rays which are used to locate spaces of discrete groups. The theory also suggests why groups represented by the red dots on the rays in the inner part of the eye display some interesting geometry.
 

Fri, 12 May 2017
16:00
L1

Chaos and wild chaos in Lorenz-type systems

Hinke M Osinga
(University of Auckland, NZ)
Abstract

Hinke Osinga, University of Auckland
joint work with: Bernd Krauskopf and Stefanie Hittmeyer (University of Auckland)

Dynamical systems of Lorenz type are similar to the famous Lorenz system of just three ordinary differential equations in a well-defined geometric sense. The behaviour of the Lorenz system is organised by a chaotic attractor, known as the butterfly attractor. Under certain conditions, the dynamics is such that a dimension reduction can be applied, which relates the behaviour to that of a one-dimensional non-invertible map. A lot of research has focussed on understanding the dynamics of this one-dimensional map. The study of what this means for the full three-dimensional system has only recently become possible through the use of advanced numerical methods based on the continuation of two-point boundary value problems. Did you know that the chaotic dynamics is organised by a space-filling pancake? We show how similar techniques can help to understand the dynamics of higher-dimensional Lorenz-type systems. Using a similar dimension-reduction technique, a two-dimensional non-invertible map describes the behaviour of five or more ordinary differential equations. Here, a new type of chaotic dynamics is possible, called wild chaos. 


 

 

Fri, 28 Apr 2017

16:00 - 17:00
L1

From diagrams to number theory via categorification

Catharina Stroppel
(University of Bonn)
Abstract

Permutations of finitely many elements are often drawn as permutation diagrams. We take this point of view as a motivation to construct and describe more complicated algebras arising for instance from differential operators, from operators acting on (co)homologies, from invariant theory, or from Hecke algebras. The surprising fact is that these diagrams are elementary and simple to describe, but at the same time describe relations between cobordisms as well as categories of represenetations of p-adic groups. The goal of the talk is to give some glimpses of these phenomena and indicate which role categorification plays here.
 

Fri, 03 Mar 2017

16:00 - 17:00
L1

Reciprocity laws and torsion classes

Ana Caraiani
(University of Bonn)
Abstract

The law of quadratic reciprocity and the celebrated connection between modular forms and elliptic curves over Q are both examples of reciprocity laws. Constructing new reciprocity laws is one of the goals of the Langlands program, which is meant to connect number theory with harmonic analysis and representation theory.

In this talk, I will survey some recent progress in establishing new reciprocity laws, relying on the Galois representations attached to torsion classes which occur in the cohomology of arithmetic hyperbolic 3-manifolds. I will outline joint work in progress on better understanding these Galois representations, proving modularity lifting theorems in new settings, and applying this to elliptic curves over imaginary quadratic fields.

Fri, 10 Feb 2017

16:00 - 17:00
L1

Self-organized dynamics: from emergence of consensus to social hydrodynamics

Eitan Tadmor
(University of Maryland and ETH-ITS)
Abstract

Self-organization is observed in systems driven by the “social engagement” of agents with their local neighbors. Prototypical models are found in opinion dynamics, flocking, self-organization of biological organisms, and rendezvous in mobile networks.

We discuss the emergent behavior of such systems. Two natural questions arise in this context. The underlying issue of the first question is how different rules of engagement influence the formation of clusters, and in particular, the emergence of 'consensus'. Different paradigms of emergence yield different patterns, depending on the propagation of connectivity of the underlying graphs of communication.  The second question involves different descriptions of self-organized dynamics when the number of agents tends to infinity. It lends itself to “social hydrodynamics”, driven by the corresponding tendency to move towards the local means. 

We discuss the global regularity of social hydrodynamics for sub-critical initial configurations.

Fri, 27 Jan 2017
16:00
L1

Mathematics and Auction Design

Paul Klemperer
(University of Oxford)
Abstract

Mathematical methods are increasingly being used to design auctions. Paul Klemperer will talk about some of his own experience which includes designing the U.K.'s mobile phone licence auction that raised £22.5 billion, and a new auction that helped the Bank of England in the financial crisis. (The then-Governor, Mervyn King, described it as "a marvellous application of theoretical economics to a practical problem of vital importance".) He will also discuss further development of the latter auction using convex and "tropical" geometric methods.

Fri, 02 Dec 2016

16:00 - 17:00
L1

Topologically Ordered Matter and Why You Should be Interested

Steve Simon
(University of Oxford)
Abstract

In two dimensional topological phases of matter, processes depend on gross topology rather than detailed geometry. Thinking in 2+1 dimensions, the space-time histories of particles can be interpreted as knots or links, and the amplitude for certain processes becomes a topological invariant of that link. While sounding rather exotic, we believe that such phases of matter not only exist, but have actually been observed (or could be soon observed) in experiments. These phases of matter could provide a uniquely practical route to building a quantum computer. Experimental systems of relevance include Fractional Quantum Hall Effects, Exotic superconductors such as Strontium Ruthenate, Superfluid Helium, Semiconductor-Superconductor-Spin-Orbit systems including Quantum Wires. The physics of these systems, and how they might be used for quantum computation will be discussed.

Mon, 20 Jun 2016
16:00
L1

Formal Moduli Problems

Jacob Lurie (Hardy Lecture Tour)
(Harvard University)
Abstract

Let X be a complex algebraic variety containing a point x. One of the central ideas of deformation theory is that the local structure of X near the point x can be encoded by a differential graded Lie algebra. In this talk, Jacob Lurie will explain this idea and discuss some generalizations to more exotic contexts.

Fri, 17 Jun 2016

16:00 - 17:00
L1

Conjugacy classes and group representations

David Vogan
(MIT)
Abstract

One of the big ideas in linear algebra is {\em eigenvalues}. Most matrices become in some basis {\em diagonal} matrices; so a lot of information about the matrix (which is specified by $n^2$ matrix entries) is encoded by by just $n$ eigenvalues. The fact that lots of different matrices can have the same eigenvalues reflects the fact that matrix multiplication is not commutative.

I'll look at how to make these vague statements (``lots of different matrices...") more precise; how to extend them from matrices to abstract symmetry groups; and how to relate abstract symmetry groups to matrices.

Fri, 03 Jun 2016

16:00 - 17:00
L1

Eigenvectors of Tensors

Bernd Sturmfels
(UC Berkeley)
Abstract

Eigenvectors of square matrices are central to linear algebra. Eigenvectors of tensors are a natural generalization. The spectral theory of tensors was pioneered by Lim and Qi around 2005. It has numerous applications, and ties in closely with optimization and dynamical systems.  We present an introduction that emphasizes algebraic and geometric aspects

Fri, 12 Feb 2016

16:00 - 17:00
L1

From particle systems to Fluid Mechanics

Isabelle Gallagher
(University of Paris-Diderot)
Abstract

The question of deriving Fluid Mechanics equations from deterministic
systems of interacting particles obeying Newton's laws, in the limit
when the number of particles goes to infinity, is a longstanding open
problem suggested by Hilbert in his 6th problem. In this talk we shall
present a few attempts in this program, by explaining how to derive some
linear models such as the Heat, acoustic and Stokes-Fourier equations.
This corresponds to joint works with Thierry Bodineau and Laure Saint
Raymond.

Fri, 29 Jan 2016
16:00
L1

Structure, phase transitions, and belief propagation in sparse networks

Mark Newman
(Univ. of Michigan)
Abstract

Most networks and graphs encountered in empirical studies, including internet and web graphs, social networks, and biological and ecological networks, are very sparse.  Standard spectral and linear algebra methods can fail badly when applied to such networks and a fundamentally different approach is needed.  Message passing methods, such as belief propagation, offer a promising solution for these problems.  In this talk I will introduce some simple models of sparse networks and illustrate how message passing can form the basis for a wide range of calculations of their structure.  I will also show how message passing can be applied to real-world data to calculate fundamental properties such as percolation thresholds, graph spectra, and community structure, and how the fixed-point structure of the message passing equations has a deep connection with structural phase transitions in networks.

Fri, 27 Nov 2015

16:00 - 17:00
L1

Are Black Holes Real ?

Sergiu Klainerman
(Princeton University, NJ)
Abstract

The talk will consider three well-defined problems which can be interpreted as mathematical tests of the physical reality of black holes: Rigidity, stability and formation of black holes.