## Further Information:

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details. Joint with the Random Matrix Theory Seminar.

This is joint work with Paul Bourgade and Benjamin McKenna (Courant Institute, NYU).

The elastic manifold is a paradigmatic representative of the class of disordered elastic systems. These models describe random surfaces with rugged shapes resulting from a competition between random spatial impurities (preferring disordered configurations), on the one hand, and elastic self-interactions (preferring ordered configurations), on the other. The elastic manifold model is interesting because it displays a depinning phase transition and has a long history as a testing ground for new approaches in statistical physics of disordered media, for example for fixed dimension by Fisher (1986) using functional renormalization group methods, and in the high-dimensional limit by Mézard and Parisi (1992) using the replica method.

We study the topology of the energy landscape of this model in the Mézard-Parisi setting, and compute the (annealed) topological complexity both of total critical points and of local minima. Our main result confirms the recent formulas by Fyodorov and Le Doussal (2020) and allows to identify the boundary between simple and glassy phases. The core argument relies on the analysis of the asymptotic behavior of large random determinants in the exponential scale.