Forthcoming events in this series


Tue, 25 May 2021
14:00
Virtual

Crossing probabilities for planar percolation

Vincent Tassion
(ETH)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Percolation models were originally introduced to describe the propagation of a fluid in a random medium. In dimension two, the percolation properties of a model are encoded by so-called crossing probabilities (probabilities that certain rectangles are crossed from left to right). In the eighties, Russo, Seymour and Welsh obtained general bounds on crossing probabilities for Bernoulli percolation (the most studied percolation model, where edges of a lattice are independently erased with some given probability $1-p$). These inequalities rapidly became central tools to analyze the critical behavior of the model.
In this talk I will present a new result which extends the Russo-Seymour-Welsh theory to general percolation measures satisfying two properties: symmetry and positive correlation. This is a joint work with Laurin Köhler-Schindler.

Tue, 18 May 2021
15:15
Virtual

Factors in randomly perturbed graphs

Amedeo Sgueglia
(LSE)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We study the model of randomly perturbed dense graphs, which is the union of any $n$-vertex graph $G_\alpha$ with minimum degree at least $\alpha n$ and the binomial random graph $G(n,p)$. In this talk, we shall examine the following central question in this area: to determine when $G_\alpha \cup G(n,p)$ contains $H$-factors, i.e. spanning subgraphs consisting of vertex disjoint copies of the graph $H$. We offer several new sharp and stability results.
This is joint work with Julia Böttcher, Olaf Parczyk, and Jozef Skokan.

Tue, 18 May 2021
14:00
Virtual

Benjamini-Schramm local limits of sparse random planar graphs

Mihyun Kang
(Graz)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk we will discuss some classical and recent results on local limits of random graphs. It is well known that the limiting object of the local structure of the classical Erdos-Renyi random graph is a Galton-Watson tree. This can nicely be formalised in the language of Benjamini-Schramm or Aldous-Steele local weak convergence. Regarding local limits of sparse random planar graphs, there is a smooth transition from a Galton-Watson tree to a Skeleton tree. This talk is based on joint work with Michael Missethan.

Tue, 11 May 2021
16:30
Virtual

Lower bounds for multicolor Ramsey numbers

Asaf Ferber
(University of California Irvine)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We present an exponential improvement to the lower bound on diagonal Ramsey numbers for any fixed number of colors greater than two.
This is a joint work with David Conlon.
 

Tue, 11 May 2021
15:00
Virtual

The ants walk: finding geodesics in graphs using reinforcement learning

Cécile Mailler
(Bath)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

How does a colony of ants find the shortest path between its nest and a source of food without any means of communication other than the pheromones each ant leave behind itself?
In this joint work with Daniel Kious (Bath) and Bruno Schapira (Marseille), we introduce a new probabilistic model for this phenomenon. In this model, the nest and the source of food are two marked nodes in a finite graph. Ants perform successive random walks from the nest to the food, and the distribution of the $n$th walk depends on the trajectories of the $(n-1)$ previous walks through some linear reinforcement mechanism.
Using stochastic approximation methods, couplings with Pólya urns, and the electric conductances method for random walks on graphs (which I will explain on some simple examples), we prove that, depending on the exact reinforcement rule, the ants may or may not always find the shortest path(s) between their nest and the source food.

Tue, 04 May 2021
15:30
Virtual

Geodesics in random geometry

Jean-François Le Gall
(Paris-Saclay)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We discuss the behavior of geodesics in the continuous models of random geometry known as the Brownian map and the Brownian plane. We say that a point $x$ is a geodesic star with $m$ arms if $x$ is the endpoint of $m$ disjoint geodesics. We prove that the set of all geodesic stars with $m$ arms has dimension $5-m$, for $m=1,2,3,4$. This complements recents results of Miller and Qian, who derived upper bounds for these dimensions.

Tue, 04 May 2021
14:00
Virtual

How does the chromatic number of a random graph vary?

Annika Heckel
(LMU München)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

How much does the chromatic number of the random graph $G(n, 1/2)$ vary? Shamir and Spencer proved that it is contained in some sequence of intervals of length about $n^{1/2}$. Alon improved this slightly to $n^{1/2} / \log n$. Until recently, however, no lower bounds on the fluctuations of the chromatic number of $G(n, 1/2)$ were known, even though the question was raised by Bollobás many years ago. I will talk about the main ideas needed to prove that, at least for infinitely many $n$, the chromatic number of $G(n, 1/2)$ is not concentrated on fewer than $n^{1/2-o(1)}$ consecutive values.
I will also discuss the Zigzag Conjecture, made recently by Bollobás, Heckel, Morris, Panagiotou, Riordan and Smith: this proposes that the correct concentration interval length 'zigzags' between $n^{1/4+o(1)}$ and $n^{1/2+o(1)}$, depending on $n$.
Joint work with Oliver Riordan.

Tue, 27 Apr 2021
15:30
Virtual

Reversible Markov chains with nonnegative spectrum

Roberto Oliveira
(IMPA)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The title of the talk corresponds to a family of interesting random processes, which includes lazy random walks on graphs and much beyond them. Often, a key step in analysing such processes is to estimate their spectral gaps (ie. the difference between two largest eigenvalues). It is thus of interest to understand what else about the chain we can know from the spectral gap. We will present a simple comparison idea that often gives us the best possible estimates. In particular, we re-obtain and improve upon several known results on hitting, meeting, and intersection times; return probabilities; and concentration inequalities for time averages. We then specialize to the graph setting, and obtain sharp inequalities in that setting. This talk is based on work that has been in progress for far too long with Yuval Peres.

Tue, 27 Apr 2021
14:00
Virtual

Maximum stationary values in directed random graphs

Guillem Perarnau
(Universitat Politecnica de Catalunya)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk we will consider the extremal values of the stationary distribution of the sparse directed configuration model. Under the assumption of linear $(2+\eta)$-moments on the in-degrees and of bounded out-degrees, we obtain tight comparisons between the maximum value of the stationary distribution and the maximum in-degree. Under the further assumption that the order statistics of the in-degrees have power-law behavior, we show that the upper tail of the stationary distribution also has power-law behavior with the same index. Moreover, these results extend to the PageRank scores of the model, thus confirming a version of the so-called power-law hypothesis. Joint work with Xing Shi Cai, Pietro Caputo and Matteo Quattropani.

Tue, 09 Mar 2021
15:30
Virtual

A Topological Turán Problem

Corrine Yap
(Rutgers)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The classical Turán problem asks: given a graph $H$, how many edges can an $4n$-vertex graph have while containing no isomorphic copy of $H$? By viewing $(k+1)$-uniform hypergraphs as $k$-dimensional simplicial complexes, we can ask a topological version (first posed by Nati Linial): given a $k$-dimensional simplicial complex $S$, how many facets can an $n$-vertex $k$-dimensional simplicial complex have while containing no homeomorphic copy of $S$? Until recently, little was known for $k > 2$. In this talk, we give an answer for general $k$, by way of dependent random choice and the combinatorial notion of a trace-bounded hypergraph. Joint work with Jason Long and Bhargav Narayanan.

Tue, 09 Mar 2021
14:00
Virtual

Tail asymptotics for extinction times of self-similar fragmentations

Bénédicte Haas
(Paris 13)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Self-similar fragmentation processes are random models for particles that are subject to successive fragmentations. When the index of self-similarity is negative the fragmentations intensify as the masses of particles decrease. This leads to a shattering phenomenon, where the initial particle is entirely reduced to dust - a set of zero-mass particles - in finite time which is what we call the extinction time. Equivalently, these extinction times may be seen as heights of continuous compact rooted trees or scaling limits of heights of sequences of discrete trees. Our objective is to set up precise bounds for the large time asymptotics of the tail distributions of these extinction times.

Tue, 02 Mar 2021
15:30
Virtual

The uniform spanning tree in 4 dimensions

Perla Sousi
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A uniform spanning tree of $\mathbb{Z}^4$ can be thought of as the "uniform measure" on trees of $\mathbb{Z}^4$. The past of 0 in the uniform spanning tree is the finite component that is disconnected from infinity when 0 is deleted from the tree. We establish the logarithmic corrections to the probabilities that the past contains a path of length $n$, that it has volume at least $n$ and that it reaches the boundary of the box of side length $n$ around 0. Dimension 4 is the upper critical dimension for this model in the sense that in higher dimensions it exhibits "mean-field" critical behaviour. An important part of our proof is the study of the Newtonian capacity of a loop erased random walk in 4 dimensions. This is joint work with Tom Hutchcroft.

Tue, 02 Mar 2021
14:00
Virtual

Sparse expanders have negative Ollivier-Ricci curvature

Justin Salez
(Université Paris-Dauphine)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We prove that bounded-degree expanders with non-negative Ollivier-Ricci curvature do not exist, thereby solving a long-standing open problem suggested by Naor and Milman and publicized by Ollivier (2010). In fact, this remains true even if we allow for a vanishing proportion of large degrees, large eigenvalues, and negatively-curved edges. To establish this, we work directly at the level of Benjamini-Schramm limits. More precisely, we exploit the entropic characterization of the Liouville property on stationary random graphs to show that non-negative curvature and spectral expansion are incompatible 'at infinity'. We then transfer this result to finite graphs via local weak convergence and a relative compactness argument. We believe that this 'local weak limit' approach to mixing properties of Markov chains will have many other applications.

Tue, 16 Feb 2021
15:30
Virtual

Some unusual extremal problems in convexity and combinatorics

Ramon van Handel
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

It is a basic fact of convexity that the volume of convex bodies is a polynomial, whose coefficients contain many familiar geometric parameters as special cases. A fundamental result of convex geometry, the Alexandrov-Fenchel inequality, states that these coefficients are log-concave. This proves to have striking connections with other areas of mathematics: for example, the appearance of log-concave sequences in many combinatorial problems may be understood as a consequence of the Alexandrov-Fenchel inequality and its algebraic analogues.

There is a long-standing problem surrounding the Alexandrov-Fenchel inequality that has remained open since the original works of Minkowski (1903) and Alexandrov (1937): in what cases is equality attained? In convexity, this question corresponds to the solution of certain unusual isoperimetric problems, whose extremal bodies turn out to be numerous and strikingly bizarre. In combinatorics, an answer to this question would provide nontrivial information on the type of log-concave sequences that can arise in combinatorial applications. In recent work with Y. Shenfeld, we succeeded to settle the equality cases completely in the setting of convex polytopes. I will aim to describe this result, and to illustrate its potential combinatorial implications through a question of Stanley on the combinatorics of partially ordered sets.

Tue, 16 Feb 2021
14:00
Virtual

Geodesic Geometry on Graphs

Nati Linial
(Hebrew University of Jerusalem)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We investigate a graph theoretic analog of geodesic geometry. In a graph $G=(V,E)$ we consider a system of paths $P=\{P_{u,v}| u,v\in V\}$ where $P_{u,v}$ connects vertices $u$ and $v$. This system is consistent in that if vertices $y,z$ are in $P_{u,v}$, then the sub-path of $P_{u,v}$ between them coincides with $P_{y,z}$. A map $w:E\to(0,\infty)$ is said to induce $P$ if for every $u,v\in V$ the path $P_{u,v}$ is $w$-geodesic. We say that $G$ is metrizable if every consistent path system is induced by some such $w$. As we show, metrizable graphs are very rare, whereas there exist infinitely many 2-connected metrizable graphs.
 

Tue, 09 Feb 2021
15:30
Virtual

Product structure theory and its applications

Vida Dujmović
(Ottawa)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will introduce product structure theory of graphs and show how families of graphs that have such a structure admit short adjacency labeling scheme and small induced universal graphs. Time permitting, I will talk about another recent application of product structure theory, namely vertex ranking (coloring).

Tue, 09 Feb 2021
14:00
Virtual

The scaling limit of a critical random directed graph

Robin Stephenson
(Sheffield)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We consider the random directed graph $D(n,p)$ with vertex set $\{1,2,…,n\}$ in which each of the $n(n-1)$ possible directed edges is present independently with probability $p$. We are interested in the strongly connected components of this directed graph. A phase transition for the emergence of a giant strongly connected component is known to occur at $p = 1/n$, with critical window $p = 1/n + \lambda n-4/3$ for $\lambda \in \mathbb{R}$. We show that, within this critical window, the strongly connected components of $D(n,p)$, ranked in decreasing order of size and rescaled by $n-1/3$, converge in distribution to a sequence $(C_1,C_2,\ldots)$ of finite strongly connected directed multigraphs with edge lengths which are either 3-regular or loops. The convergence occurs in the sense of an $L^1$ sequence metric for which two directed multigraphs are close if there are compatible isomorphisms between their vertex and edge sets which roughly preserve the edge lengths. Our proofs rely on a depth-first exploration of the graph which enables us to relate the strongly connected components to a particular spanning forest of the undirected Erdős-Rényi random graph $G(n,p)$, whose scaling limit is well understood. We show that the limiting sequence $(C_1,C_2,\ldots)$ contains only finitely many components which are not loops. If we ignore the edge lengths, any fixed finite sequence of 3-regular strongly connected directed multigraphs occurs with positive probability.

Tue, 02 Feb 2021
15:30
Virtual

Free boundary dimers: random walk representation and scaling limit

Nathanaël Berestycki
(Vienna)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The dimer model, a classical model of statistical mechanics, is the uniform distribution on perfect matchings of a graph. In two dimensions, one can define an associated height function which turns the model into a random surface (with specified boundary conditions). In the 1960s, Kasteleyn and Temperley/Fisher found an exact "solution" to the model, computing the correlations in terms of a matrix called the Kasteleyn matrix. This exact solvability was the starting point for the breakthrough work of Kenyon (2000) who proved that the centred height function converges to the Dirichlet (or zero boundary conditions) Gaussian free field. This was the first proof of conformal invariance in statistical mechanics.

In this talk, I will focus on a natural modification of the model where one allows the vertices on the boundary of the graph to remain unmatched: this is the so-called monomer-dimer model, or dimer model with free boundary conditions. The main result that we obtain is that the scaling limit of the height function of the monomer-dimer model in the upper half-plane is the Neumann (or free boundary conditions) Gaussian free field. Key to this result is a somewhat miraculous random walk representation for the inverse Kasteleyn matrix, which I hope to discuss.

Joint work with Marcin Lis (Vienna) and Wei Qian (Paris).

Tue, 02 Feb 2021
14:00
Virtual

On the extension complexity of low-dimensional polytopes

Lisa Sauermann
(IAS)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

It is sometimes possible to represent a complicated polytope as a projection of a much simpler polytope. To quantify this phenomenon, the extension complexity of a polytope $P$ is defined to be the minimum number of facets in a (possibly higher-dimensional) polytope from which $P$ can be obtained as a (linear) projection. In this talk, we discuss some results on the extension complexity of random $d$-dimensional polytopes (obtained as convex hulls of random points on either on the unit sphere or in the unit ball), and on the extension complexity of polygons with all vertices on a common circle. Joint work with Matthew Kwan and Yufei Zhao

Tue, 26 Jan 2021
15:30
Virtual

Random friends walking on random graphs

Noga Alon
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Let $X$ and $Y$ be two $n$-vertex graphs. Identify the vertices of $Y$ with $n$ people, any two of whom are either friends or strangers (according to the edges and non-edges in $Y$), and imagine that these people are standing one at each vertex of $X$. At each point in time, two friends standing at adjacent vertices of $X$ may swap places, but two strangers may not. The friends-and-strangers graph $FS(X,Y)$ has as its vertex set the collection of all configurations of people standing on the vertices of $X$, where two configurations are adjacent when they are related via a single friendly swap. This provides a common generalization for the famous 15-puzzle, transposition Cayley graphs of symmetric groups, and early work of Wilson and of Stanley.
I will describe several recent results and open problems addressing the extremal and typical aspects of the notion, focusing on the result that the threshold probability for connectedness of $FS(X,Y)$ for two independent binomial random graphs $X$ and $Y$ in $G(n,p)$ is $p=p(n)=n-1/2+o(1)$.
Joint work with Colin Defant and Noah Kravitz.

Tue, 26 Jan 2021
14:00
Virtual

A solution to Erdős and Hajnal's odd cycle problem

Richard Montgomery
(Birmingham)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss how to construct cycles of many different lengths in graphs, in particular answering the following two problems on odd and even cycles. Erdős and Hajnal asked in 1981 whether the sum of the reciprocals of the odd cycle lengths in a graph diverges as the chromatic number increases, while, in 1984, Erdős asked whether there is a constant $C$ such that every graph with average degree at least $C$ contains a cycle whose length is a power of 2.

Tue, 19 Jan 2021
16:00
Virtual

Hypergraph regularity and higher arity VC-dimension

Artem Chernikov
(UCLA)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We generalize the fact that all graphs omitting a fixed finite bipartite graph can be uniformly approximated by rectangles (Alon-Fischer-Newman, Lovász-Szegedy), showing that hypergraphs omitting a fixed finite $(k+1)$-partite $(k+1)$-uniform hypergraph can be approximated by $k$-ary cylinder sets. In particular, in the decomposition given by hypergraph regularity one only needs the first $k$ levels: such hypergraphs can be approximated using sets of vertices, sets of pairs, and so on up to sets of $k$-tuples, and on most of the resulting $k$-ary cylinder sets, the density is either close to 0 or close to 1. Moreover, existence of such approximations uniformly under all measures on the vertices is a characterization. Our proof uses a combination of analytic, combinatorial and model-theoretic methods, and involves a certain higher arity generalization of the epsilon-net theorem from VC-theory.  Joint work with Henry Towsner.

Tue, 19 Jan 2021
14:30
Virtual

A subspace theorem for manifolds

Emmanuel Breuillard
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The Schmidt subspace theorem is a far-reaching generalization of the Thue-Siegel-Roth theorem in diophantine approximation. In this talk I will give an interpretation of Schmidt's subspace theorem in terms of the dynamics of diagonal flows on homogeneous spaces and describe how the exceptional subspaces arise from certain rational Schubert varieties associated to the family of linear forms through the notion of Harder-Narasimhan filtration and an associated slope formalism. This geometric understanding opens the way to a natural generalization of Schmidt's theorem to the setting of diophantine approximation on submanifolds of $GL_d$, which is our main result. In turn this allows us to recover and generalize the main results of Kleinbock and Margulis regarding diophantine exponents of submanifolds. I will also mention an application to diophantine approximation on Lie groups. Joint work with Nicolas de Saxcé.

Tue, 24 Nov 2020
15:30
Virtual

Sparse universal graphs for planarity

Gwenaël Joret
(Universite Libre de Bruxelles)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

This talk will focus on the following two related problems:
    (1) What is the minimum number of edges in a graph containing all $n$-vertex planar graphs as subgraphs? A simple construction of Babai, Erdos, Chung, Graham, and Spencer (1982) has $O(n^{3/2})$ edges, which is the best known upper bound.
    (2) What is the minimum number of *vertices* in a graph containing all $n$-vertex planar graphs as *induced* subgraphs? Here steady progress has been achieved over the years, culminating in a $O(n^{4/3})$ bound due to Bonamy, Gavoille, and Pilipczuk (2019).
    As it turns out, a bound of $n^{1+o(1)}$ can be achieved for each of these two problems. The two constructions are somewhat different but are based on a common technique. In this talk I will first give a gentle introduction to the area and then sketch these constructions. The talk is based on joint works with Vida Dujmović, Louis Esperet, Cyril Gavoille, Piotr Micek, and Pat Morin.

Tue, 24 Nov 2020
14:00
Virtual

Matching Random Points

Alexander Holroyd
(Bristol)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What is fairness, and to what extent is it practically achievable? I'll talk about a simple mathematical model under which one might hope to understand such questions. Red and blue points occur as independent homogeneous Poisson processes of equal intensity in Euclidean space, and we try to match them to each other. We would like to minimize the sum of a some function (say, a power, $\gamma$) of the distances between matched pairs. This does not make sense, because the sum is infinite, so instead we satisfy ourselves with minimizing *locally*. If the points are interpreted as agents who would like to be matched as close as possible, the parameter $\gamma$ encodes a measure of fairness - large $\gamma$ means that we try to avoid occasional very bad outcomes (long edges), even if that means inconvenience to others - small $\gamma$ means everyone is in it for themselves.
    In dimension 1 we have a reasonably complete picture, with a phase transition at $\gamma=1$. For $\gamma<1$ there is a unique minimal matching, while for $\gamma>1$ there are multiple matchings but no stationary solution. In higher dimensions, even existence is not clear in all cases.