Forthcoming events in this series


Tue, 28 Jan 2014

14:30 - 15:30
L6

The existence of designs

Peter Keevash
(University of Oxford)
Abstract

A Steiner Triple System on a set X is a collection T of 3-element subsets of X such that every pair of elements of X is contained in exactly one of the triples in T. An example considered by Plücker in 1835 is the affine plane of order three, which consists of 12 triples on a set of 9 points. Plücker observed that a necessary condition for the existence of a Steiner Triple System on a set with n elements is that n be congruent to 1 or 3 mod 6. In 1846, Kirkman showed that this necessary condition is also sufficient.

In 1853, Steiner posed the natural generalisation of the question: given integers q and r, for which n is it possible to choose a collection Q of q-element subsets of an n-element set X such that any r elements of X are contained in exactly one of the sets in Q? There are some natural necessary divisibility conditions generalising the necessary conditions for Steiner Triple Systems. The Existence Conjecture states that for all but finitely many n these divisibility conditions are also sufficient for the existence of general Steiner systems (and more generally designs).

We prove the Existence Conjecture, and more generally, we show that the natural divisibility conditions are sufficient for clique decompositions of simplicial complexes that satisfy a certain pseudorandomness condition.

Tue, 21 Jan 2014

14:30 - 15:30
L6

Sparse graph limits and scale-free networks

Yufei Zhao
(MIT)
Abstract

We introduce and develop a theory of limits for sequences of sparse graphs based on $L^p$ graphons, which generalizes both the existing $L^\infty$ theory of dense graph limits and its extension by Bollob\'as and Riordan to sparse graphs without dense spots. In doing so, we replace the no dense spots hypothesis with weaker assumptions, which allow us to analyze graphs with power law degree distributions. This gives the first broadly applicable limit theory for sparse graphs with unbounded average degrees.

Joint work with Christian Borgs, Jennifer T. Chayes, and Henry Cohn.

Tue, 03 Dec 2013

14:30 - 15:30
C2

How many edges are needed to force an $H$-minor?

Bruce Reed
(McGill University)
Abstract

We consider the parameter $a(H)$, which is the smallest a such that if $|E(G)|$ is at least/exceeds $a|V(H)|/2$ then $G$ has an $H$-minor. We are especially interested in sparse $H$ and in bounding $a(H)$ as a function of $|E(H)|$ and $|V(H)|$. This is joint work with David Wood.

Tue, 26 Nov 2013

14:30 - 15:30
L3

FO limits of trees

Dan Kral
(University of Warwick)
Abstract

Nesetril and Ossona de Mendez introduced a new notion of convergence of graphs called FO convergence. This notion can be viewed as a unified notion of convergence of dense and sparse graphs. In particular, every FO convergent sequence of graphs is convergent in the sense of left convergence of dense graphs as studied by Borgs, Chayes, Lovasz, Sos, Szegedy, Vesztergombi and others, and every FO convergent sequence of graphs with bounded maximum degree is convergent in the Benjamini-Schramm sense.

FO convergent sequences of graphs can be associated with a limit object called modeling. Nesetril and Ossona de Mendez showed that every FO convergent sequence of trees with bounded depth has a modeling. We extend this result

to all FO convergent sequences of trees and discuss possibilities for further extensions.

The talk is based on a joint work with Martin Kupec and Vojtech Tuma.

Tue, 19 Nov 2013

14:30 - 15:30
L2

Set Intersections, Perfect Graphs, and Voting in Agreeable Societies

Francis Edward Su
(Harvey Mudd College (USA))
Abstract

We prove a generalization of Helly's theorem concerning intersections of convex sets that has an interesting voting theory interpretation. We then
consider various extensions in which compelling mathematical problems are motivated from very natural questions in the voting context.

Tue, 12 Nov 2013

14:30 - 15:30
L2

The Ramsey number of the clique and the hypercube

Simon Griffiths
(University of Oxford)
Abstract

The Ramsey number $R(K_s, Q_n)$ is the smallest integer $N$ such that every red-blue colouring of the edges of the complete graph $K_N$ contains either a red $n$-dimensional hypercube, or a blue clique on $s$ vertices. Note that $N=(s-1)(2^n -1)$ is not large enough, since we may colour in red $(s-1)$ disjoint cliques of cardinality $2^N -1$ and colour the remaining edges blue. In 1983, Burr and Erdos conjectured that this example was the best possible, i.e., that $R(K_s, Q_n) = (s-1)(2^n -1) + 1$ for every positive integer $s$ and sufficiently large $n$. In a recent breakthrough, Conlon, Fox, Lee and Sudakov proved the conjecture up to a multiplicative constant for each $s$. In this talk we shall sketch the proof of the conjecture and discuss some related problems.

(Based on joint work with Gonzalo Fiz Pontiveros, Robert Morris, David Saxton and Jozef Skokan)

Tue, 05 Nov 2013

14:30 - 15:30
L3

The Tutte polynomial: sign and approximability

Mark Jerrum
(University of London)
Abstract

The Tutte polynomial of a graph $G$ is a two-variable polynomial $T(G;x,y)$, which encodes much information about~$G$. The number of spanning trees in~$G$, the number of acyclic orientations of~$G$, and the partition function of the $q$-state Potts model are all specialisations of the Tutte polynomial. Jackson and Sokal have studied the sign of the Tutte polynomial, and identified regions in the $(x,y)$-plane where it is ``essentially determined'', in the sense that the sign is a function of very simple characteristics of $G$, e.g., the number of vertices and connected components of~$G$. It is natural to ask whether the sign of the Tutte polynomial is hard to compute outside of the regions where it is essentially determined. We show that the answer to this question is often an emphatic ``yes'': specifically, that determining the sign is \#P-hard. In such cases, approximating the Tutte polynomial with small relative error is also \#P-hard, since in particular the sign must be determined. In the other direction, we can ask whether the Tutte polynomial is easy to approximate in regions where the sign is essentially determined. The answer is not straightforward, but there is evidence that it often ``no''. This is joint work with Leslie Ann Goldberg (Oxford).

Tue, 29 Oct 2013

14:30 - 15:30
C2

Hypergraph matchings

Peter Keevash
(University of Oxford)
Abstract

Perfect matchings are fundamental objects of study in graph theory. There is a substantial classical theory, which cannot be directly generalised to hypergraphs unless P=NP, as it is NP-complete to determine whether a hypergraph has a perfect matching. On the other hand, the generalisation to hypergraphs is well-motivated, as many important problems can be recast in this framework, such as Ryser's conjecture on transversals in latin squares and the Erdos-Hanani conjecture on the existence of designs. We will discuss a characterisation of the perfect matching problem for uniform hypergraphs that satisfy certain density conditions (joint work with Richard Mycroft), and a polynomial time algorithm for determining whether such hypergraphs have a perfect matching (joint work with Fiachra Knox and Richard Mycroft).

Thu, 24 Oct 2013

11:00 - 12:00
C4

Logical limit laws for minor-closed classes of graphs

Marc Noy
(Universitat Politecnica de Catalunya)
Abstract

Let $G$ be an addable minor-closed class of graphs. We prove that a zero-one law holds in monadic second-order logic (MSO) for connected graphs in G, and a convergence law in MSO for all graphs in $G$. For each surface $S$, we prove the existence of a zero-one law in first order logic (FO) for connected graphs embeddable in $S$, and a convergence law in FO for all graphs embeddable in $S$. Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface $S$. If $G$ is an addable minor-closed class, we prove that the closure of the set of limiting probabilities is a finite union of intervals, and it is the same for FO and MSO. For the class of planar graphs it consists of exactly 108 intervals. We give examples of non-addable classes where the results are quite different: for instance, the zero-one law does not hold for caterpillars, even in FO. This is joint work with Peter Heinig, Tobias Müller and Anusch Taraz.

Tue, 15 Oct 2013

14:30 - 15:30
C2

Containers for independent sets

Andrew Thomason
(University of Cambridge)
Abstract

An independent set in an $r$-uniform hypergraph is a subset of the vertices that contains no edges. A container for the independent set is a superset of it. It turns out to be desirable for many applications to find a small collection of containers, none of which is large, but which between them contain every independent set. ("Large" and "small" have reasonable meanings which will be explained.)

Applications include giving bounds on the list chromatic number of hypergraphs (including improving known bounds for graphs), counting the solutions to equations in Abelian groups, counting Sidon sets, establishing extremal properties of random graphs, etc.

The work is joint with David Saxton.

Tue, 28 May 2013

16:30 - 17:30
SR2

The critical window for the Ramsey-Turan problem

Po-Shen Loh
(CMU)
Abstract

The first application of Szemeredi's regularity method was the following celebrated Ramsey-Turan result proved by Szemeredi in 1972: any K_4-free graph on N vertices with independence number o(N) has at most (1/8 + o(1))N^2 edges. Four years later, Bollobas and Erdos gave a surprising geometric construction, utilizing the isodiametric inequality for the high dimensional sphere, of a K_4-free graph on N vertices with independence number o(N) and (1/8 - o(1)) N^2 edges. Starting with Bollobas and Erdos in 1976, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about N^2 / 8.

These problems have received considerable attention and remained one of the main open problems in this area.  More generally, it remains an important problem to determine if, for certain applications of the regularity method, alternative proofs exist which avoid using the regularity lemma and give better quantitative estimates.  In this work, we develop new regularity-free methods which give nearly best-possible bounds, solving the various open problems concerning this critical window.

Joint work with Jacob Fox and Yufei Zhao.

Tue, 28 May 2013

14:30 - 15:30
L3

The scaling limit of the minimum spanning tree of the complete graph

Christina Goldschmidt
(University of Oxford)
Abstract

Consider the complete graph on n vertices with independent and identically distributed edge-weights having some absolutely continuous distribution. The minimum spanning tree (MST) is simply the spanning subtree of smallest weight. It is straightforward to construct the MST using one of several natural algorithms. Kruskal's algorithm builds the tree edge by edge starting from the globally lowest-weight edge and then adding other edges one by one in increasing order of weight, as long as they do not create any cycles. At each step of this process, the algorithm has generated a forest, which becomes connected on the final step. In this talk, I will explain how it is possible to exploit a connection between the forest generated by Kruskal's algorithm and the Erd\"os-R\'enyi random graph in order to prove that $M_n$, the MST of the complete graph, possesses a scaling limit as $n$ tends to infinity. In particular, if we think of $M_n$ as a metric space (using the graph distance), rescale edge-lengths by $n^{-1/3}$, and endow the vertices with the uniform measure, then $M_n$ converges in distribution in the sense of the Gromov-Hausdorff-Prokhorov distance to a certain random measured real tree.

This is joint work with Louigi Addario-Berry (McGill), Nicolas Broutin (INRIA Paris-Rocquencourt) and Grégory Miermont (ENS Lyon).

Tue, 21 May 2013

14:30 - 15:30
L3

Criticality for multicommodity flows

Paul Seymour
(Princeton)
Abstract

The ``k-commodity flow problem'' is: we are given k pairs of vertices of a graph, and we ask whether there are k flows in the graph, where the ith flow is between the ith pair of vertices, and has total value one, and for each edge, the sum of the absolute values of the flows along it is at most one. We may also require the flows to be 1/2-integral, or indeed 1/p-integral for some fixed p.

If the problem is feasible (that is, the desired flows exist) then it is still feasible after contracting any edge, so let us say a flow problem is ``critical'' if it is infeasible, but becomes feasible when we contract any edge. In many special cases, all critical instances have only two vertices, but if we ask for integral flows (that is, p = 1, essentially the edge-disjoint paths problem), then there arbitrarily large critical instances, even with k = 2. But it turns out that p = 1 is the only bad case; if p>1 then all critical instances have bounded size (depending on k, but independent of p), and the same is true if there is no integrality requirement at all.

The proof gives rise to a very simple algorithm for the k edge-disjoint paths problem in 4-edge-connected graphs.

Tue, 14 May 2013

14:30 - 15:30
L3

3-coloring graphs with no induced 6-edge paths

Maria Chudnovsky
(Columbia)
Abstract

Since graph-coloring is an NP-complete problem in general, it is natural to ask how the complexity changes if the input graph is known not to contain a certain induced subgraph H. Due to results of Kaminski and Lozin, and Hoyler, the problem remains NP-complete, unless H is the disjoint union of paths. Recently the question of coloring graphs with a fixed-length induced path forbidden has received considerable attention, and only a few cases of that problem remain open for k-coloring when k>=4. However, little is known for 3-coloring. Recently we have settled the first open case for 3-coloring; namely we showed that 3-coloring graphs with no induced 6-edge paths can be done in polynomial time. In this talk we will discuss some of the ideas of the algorithm.

This is joint work with Peter Maceli and Mingxian Zhong.

Tue, 07 May 2013

14:30 - 15:30
L3

Positivity problems for low-order linear recurrence sequences

Joel Ouaknine
(University of Oxford)
Abstract

We consider two decision problems for linear recurrence sequences(LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, and for simple LRS (i.e. whose characteristic polynomial has no repeated roots) of order 9 or less. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers.
This talk is based on a recent paper, available at
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/positivity13ab…
joint with James Worrell and Matt Daws.

Tue, 23 Apr 2013

14:30 - 15:30
L3

Inside the 4G Spectrum Auction

Robert Leese
(Smith Institute)
Abstract

The recently completed auction for 4G mobile spectrum was the most importantcombinatorial auction ever held in the UK.  In general, combinatorial auctions allow bidders to place individual bids on packages of items,instead of separate bids on individual items, and this feature has theoretical advantages for bidders and sellers alike.  The accompanying challenges of implementation have been the subject of intense work over the last few years, with the result that the advantages of combinatorial auctions can now be realised in practice on a large scale.  Nowhere has this work been more prominent than in auctions for radio spectrum.  The UK's 4G auction is the most recent of these and the publication by Ofcom (the UK's telecommunications regulator) of the auction's full bidding activity creates a valuable case study of combinatorial auctions in action.

Tue, 05 Mar 2013

14:30 - 15:30
L3

Optimal covers of random graphs with Hamilton cycles

Dan Hefetz
(Birmingham)
Abstract

We prove that if $\frac{\log^{117} n}{n} \leq p \leq 1 -

n^{-1/8}$, then asymptotically almost surely the edges of $G(n,p)$ can

be covered by $\lceil \Delta(G(n,p))/2 \rceil$ Hamilton cycles. This

is clearly best possible and improves an approximate result of Glebov,

Krivelevich and Szab\'o, which holds for $p \geq n^{-1 + \varepsilon}$.

Based on joint work with Daniela Kuhn, John Lapinskas and Deryk Osthus.

Tue, 26 Feb 2013

14:30 - 15:30
L3

Limit method in extremal combinatorics

Oleg Pikhurko
(Warwick)
Abstract

Razborov's flag algebras provide a formal system

for operating with asymptotic inequalities between subgraph densities,

allowing to do extensive "book-keeping" by a computer. This novel use

of computers led to progress on many old problems of extremal

combinatorics. In some cases, finer structural information can be

derived from a flag algebra proof by by using the Removal Lemma or

graph limits. This talk will overview this approach.

Tue, 19 Feb 2013

14:30 - 15:30
L3

Bootstrap percolation on infinite trees

Karen Johannson
(Bristol)
Abstract

While usual percolation concerns the study of the connected components of

random subgraphs of an infinite graph, bootstrap percolation is a type of

cellular automaton, acting on the vertices of a graph which are in one of

two states: `healthy' or `infected'. For any positive integer $r$, the

$r$-neighbour bootstrap process is the following update rule for the

states of vertices: infected vertices remain infected forever and each

healthy vertex with at least $r$ infected neighbours becomes itself

infected. These updates occur simultaneously and are repeated at discrete

time intervals. Percolation is said to occur if all vertices are

eventually infected.

As it is often difficult to determine precisely which configurations of

initially infected vertices percolate, one often considers a random case,

with each vertex infected independently with a fixed probability $p$. For

an infinite graph, of interest are the values of $p$ for which the

probability of percolation is positive. I will give some of the history

of this problem for regular trees and present some new results for

bootstrap percolation on certain classes of randomly generated trees:

Galton--Watson trees.

Tue, 12 Feb 2013

14:30 - 15:30
L3

From monotone arithmetic progressions to bounded additive complexity in infinite words

Veselin Jungic
(Simon Fraser University)
Abstract

I will describe how a search for the answer to an old question about the existence of monotone arithmetic progressions in permutations of positive integers led to the study of infinite words with bounded additive complexity. The additive complexity of a word on a finite subset of integers is defined as the function that, for a positive integer $n$, counts the maximum number of factors of length $n$, no two of which have the same sum.

Tue, 05 Feb 2013

14:30 - 15:30
L3

Juntas, stability and isoperimetric inequalities in the symmetric group

David Ellis
(Queen Mary)
Abstract

Results of Bourgain and Kindler-Safra state that if $f$ is a Boolean function on $\{0,1\}^n$, and

the Fourier transform of $f$ is highly concentrated on low frequencies, then $f$ must be close

to a ‘junta’ (a function depending upon a small number of coordinates). This phenomenon is

known as ‘Fourier stability’, and has several interesting consequences in combinatorics,

theoretical computer science and social choice theory. We will describe some of these,

before turning to the analogous question for Boolean functions on the symmetric group. Here,

genuine stability does not occur; it is replaced by a weaker phenomenon, which we call

‘quasi-stability’. We use our 'quasi-stability' result to prove an isoperimetric inequality

for $S_n$ which is sharp for sets of size $(n-t)!$, when $n$ is large. Several open questions

remain. Joint work with Yuval Filmus (University of Toronto) and Ehud Friedgut (Weizmann

Institute).

Tue, 29 Jan 2013

14:30 - 15:30
L3

Self-avoiding walks in a half-plane

Mireille Bousquet-Melou
(Labri)
Abstract

A self-avoiding walk on a lattice is a walk that never visits the same vertex twice.  Self-avoiding walks (SAW) have attracted interest for decades, first in statistical physics, where they are considered as polymer models, and then in combinatorics and in probability theory (the first mathematical contributions are probably due to John Hammersley, from Oxford, in the early sixties). However, their properties remain poorly understood in low dimension, despite the existence of remarkable conjectures.

About two years ago, Duminil-Copin and Smirnov proved an "old" and remarkable conjecture of Nienhuis (1982), according to which the number of SAWs of length n on the honeycomb (hexagonal) lattice grows like mu^n, with mu=sqrt(2 +sqrt(2)).

This beautiful result has woken up the hope to prove other simple looking conjectures involving these objects. I will thus present the proof of a younger conjecture (1995) by Batchelor and Yung, which deals with SAWs confined to a half-plane and interacting with its boundary.

(joint work with N. Beaton, J. de Gier, H. Duminil-Copin and A. Guttmann)

Tue, 22 Jan 2013

14:30 - 15:30
L3

Long paths and cycles in subgraphs of the cube

Eoin Long
(Queen Mary)
Abstract

Let $Q_n$ denote the graph of the $n$-dimensional cube with vertex set $\{0, 1\}^n$

in which two vertices are adjacent if they differ in exactly one coordinate.

Suppose $G$ is a subgraph of $Q_n$ with average degree at least $d$. How long a

path can we guarantee to find in $G$?

My aim in this talk is to show that $G$ must contain an exponentially long

path. In fact, if $G$ has minimum degree at least $d$ then $G$ must contain a path

of length $2^d − 1$. Note that this bound is tight, as shown by a $d$-dimensional

subcube of $Q^n$. I hope to give an overview of the proof of this result and to

discuss some generalisations.

Tue, 27 Nov 2012
14:30
SR1

The hitting time of rainbow connectivity two

Annika Heckel
(Oxford)
Abstract

Rainbow connectivity is a new concept for measuring the connectivity of a graph which was introduced in 2008 by Chartrand, Johns, McKeon and Zhang. In a graph G with a given edge colouring, a rainbow path is a path all of whose edges have distinct colours. The minimum number of colours required to colour the edges of G so that every pair of vertices is joined by at least one rainbow path is called the rainbow connection number rc(G) of the graph G.

For any graph G, rc(G) >= diam(G). We will discuss rainbow connectivity in the random graph setting and present the result that for random graphs, rainbow connectivity 2 happens essentially at the same time as diameter 2. In fact, in the random graph process, with high probability the hitting times of diameter 2 and of rainbow connection number 2 coincide

Tue, 20 Nov 2012
14:30
SR1

"Interpolation, box splines, and lattice points in zonotopes"

Matthias Lenz
(Merton College)
Abstract

Given a finite list of vectors X in $\R^d$, one can define the box spline $B_X$. Box splines are piecewise polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of view and many of their properties solely depend on the structure of the matroid defined by the list X. The support of the box spline is a certain polytope called zonotope Z(X). We will show that if the list X is totally unimodular, any real-valued function defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form $p(D)B_X$ in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was conjectured by Olga Holtz and Amos Ron. The talk will focus on combinatorial aspects and all objects mentioned above will be defined. (arXiv:1211.1187)

Tue, 13 Nov 2012

14:30 - 15:30
SR1

Counting and packing Hamilton cycles in dense graphs and oriented graphs

Asaf Ferber
(Tel Aviv)
Abstract

In this talk we present a general method using permanent estimates in order to obtain results about counting and packing Hamilton cycles in dense graphs and oriented graphs. As a warm up we prove that every Dirac graph $G$ contains at least $(reg(G)/e)^n$ many distinct Hamilton cycles, where $reg(G)$ is the maximal degree of a spanning regular subgraph of $G$. We continue with strengthening a result of Cuckler by proving that the number of oriented Hamilton cycles in an almost $cn$-regular oriented graph is $(cn/e)^n(1+o(1))^n$, provided that $c$ is greater than $3/8$. Last, we prove that every graph $G$ of minimum degree at least $n/2+\epsilon n$ contains at least $reg_{even}(G)-\epsilon n$ edge-disjoint Hamilton cycles, where $reg_{even}(G)$ is the maximal even degree of a spanning regular subgraph of $G$. This proves an approximate version of a conjecture made by Osthus and K\"uhn.  Joint work with Michael Krivelevich and Benny Sudakov.

Tue, 30 Oct 2012

14:30 - 15:30
SR1

Local limit theorems for giant components

Oliver Riordan
(Oxford)
Abstract

In an Erdős--R\'enyi random graph above the phase transition, i.e.,

where there is a giant component, the size of (number of vertices in)

this giant component is asymptotically normally distributed, in that

its centred and scaled size converges to a normal distribution. This

statement does not tell us much about the probability of the giant

component having exactly a certain size. In joint work with B\'ela

Bollob\'as we prove a `local limit theorem' answering this question

for hypergraphs; the graph case was settled by Luczak and Łuczak.

The proof is based on a `smoothing' technique, deducing the local

limit result from the (much easier) `global' central limit theorem.

Tue, 23 Oct 2012

16:30 - 17:30
SR2

Realising evolutionary trees with local information

Charles Semple
(University of Canterbury)
Abstract

Results that say local information is enough to guarantee global information provide the theoretical underpinnings of many reconstruction algorithms in evolutionary biology. Such results include Buneman's Splits-Equivalence Theorem and the Tree-Metric Theorem. The first result says that, for a collection $\mathcal C$ of binary characters, pairwise compatibility is enough to guarantee compatibility for $\mathcal C$, that is, there is a phylogenetic (evolutionary) tree that realises $\mathcal C$. The second result says that, for a distance matrix $D$, if every $4\times 4$ distance submatrix of $D$ is realisable by an edge-weighted phylogenetic tree, then $D$ itself is realisable by such a tree. In this talk, we investigate these and other results of this type. Furthermore, we explore the closely-related task of determining how much information is enough to reconstruct the correct phylogenetic tree.

Tue, 23 Oct 2012

14:30 - 15:30
SR1

Law of the determinant

Van Vu
(Yale)
Abstract
Consider random matrices with independent entries (in both hermitian and non-hermtian setting). An old and basic question is:

What is the law of the determinant ?

I am going to give a survey about this problem, focusing on recent developments and new techniques, along with several open questions.

(partially based on joint works with H. Nguyen and T. Tao).
Tue, 09 Oct 2012

14:30 - 15:30
L3

Tiling Euclidean space with a polytope, by translations

Sinai Robins
(Nanyang Technological University)
Abstract

We study the problem of covering R^d by overlapping translates of a convex polytope, such that almost every point of R^d is covered exactly k times. Such a covering of Euclidean space by a discrete set of translations is called a k-tiling. The investigation of simple tilings by translations (which we call 1-tilings in this context) began with the work of Fedorov and Minkowski, and was later extended by Venkov and McMullen to give a complete characterization of all convex objects that 1-tile R^d. By contrast, for k ≥ 2, the collection of polytopes that k-tile is much wider than the collection of polytopes that 1-tile, and there is currently no known analogous characterization for the polytopes that k-tile. Here we first give the necessary conditions for polytopes P that k-tile, by proving that if P k-tiles R^d by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski’s conditions for 1-tiling polytopes, but it turns out that very new methods are necessary for the development of the theory. In the case that P has rational vertices, we also prove that the converse is true; that is, if P is a rational, centrally symmetric polytope, and if P has centrally symmetric facets, then P must k-tile R^d for some positive integer k.

Tue, 22 May 2012

14:30 - 15:30
L3

Strong Ramsey saturation for cycles

Jozef Skokan
(LSE)
Abstract

We call a graph $H$ \emph{Ramsey-unsaturated} if there is an edge in the

complement of $H$ such that the Ramsey number $r(H)$ of $H$ does not

change upon adding it to $H$. This notion was introduced by Balister,

Lehel and Schelp who also showed that cycles (except for $C_4$) are

Ramsey-unsaturated, and conjectured that, moreover, one may add {\em

any} chord without changing the Ramsey number of the cycle $C_n$, unless

$n$ is even and adding the chord creates an odd cycle.

We prove this conjecture for large cycles by showing a stronger

statement: If a graph $H$ is obtained by adding a linear number of

chords to a cycle $C_n$, then $r(H)=r(C_n)$, as long as the maximum

degree of $H$ is bounded, $H$ is either bipartite (for even $n$) or

almost bipartite (for odd $n$), and $n$ is large.

This motivates us to call cycles \emph{strongly} Ramsey-unsaturated.

Our proof uses the regularity method.

Tue, 08 May 2012

14:30 - 15:30
L3

Extremal Problems in Eulerian Digraphs

Hao Huang
(UCLA)
Abstract

Graphs and digraphs behave quite differently, and many classical results for graphs are often trivially false when extended to general digraphs. Therefore it is usually necessary to restrict to a smaller family of digraphs to obtain meaningful results. One such very natural family is Eulerian digraphs, in which the in-degree equals out-degree at every vertex.

In this talk, we discuss several natural parameters for Eulerian digraphs and study their connections. In particular, we show that for any Eulerian digraph G with n vertices and m arcs, the minimum feedback arc set (the smallest set of arcs whose removal makes G acyclic) has size at least $m^2/2n^2+m/2n$, and this bound is tight. Using this result, we show how to find subgraphs of high minimum degrees, and also long cycles in Eulerian digraphs. These results were motivated by a conjecture of Bollob\'as and Scott.

Joint work with Ma, Shapira, Sudakov and Yuster

Tue, 24 Apr 2012

14:30 - 15:30
L3

Large and judicious bisections of graphs

Choongbum Lee
(UCLA)
Abstract

It is very well known that every graph on $n$ vertices and $m$ edges admits a bipartition of size at least $m/2$. This bound can be improved to $m/2 + (n-1)/4$ for connected graphs, and $m/2 + n/6$ for graphs without isolated vertices, as proved by Edwards, and Erd\"os, Gy\'arf\'as, and Kohayakawa, respectively. A bisection of a graph is a bipartition in which the size of the two parts differ by at most 1. We prove that graphs with maximum degree $o(n)$ in fact admit a bisection which asymptotically achieves the above bounds.These results follow from a more general theorem, which can also be used to answer several questions and conjectures of Bollob\'as and Scott on judicious bisections of graphs.
Joint work with Po-Shen Loh and Benny Sudakov

Tue, 06 Mar 2012

14:30 - 15:30
L3

Random graphs on spaces of negative curvature

Nikolaos Fountoulakis (Birmingham)
Abstract

Random geometric graphs have been well studied over the last 50 years or so. These are graphs that

are formed between points randomly allocated on a Euclidean space and any two of them are joined if

they are close enough. However, all this theory has been developed when the underlying space is

equipped with the Euclidean metric. But, what if the underlying space is curved?

The aim of this talk is to initiate the study of such random graphs and lead to the development of

their theory. Our focus will be on the case where the underlying space is a hyperbolic space. We

will discuss some typical structural features of these random graphs as well as some applications,

related to their potential as a model for networks that emerge in social life or in biological

sciences.

Tue, 28 Feb 2012

14:30 - 15:30
L3

On packing and covering in hypergraphs

Penny Haxell (Waterloo)
Abstract

We discuss some recent developments on the following long-standing problem known as Ryser's

conjecture. Let $H$ be an $r$-partite $r$-uniform hypergraph. A matching in $H$ is a set of disjoint

edges, and we denote by $\nu(H)$ the maximum size of a matching in $H$. A cover of $H$ is a set of

vertices that intersects every edge of $H$. It is clear that there exists a cover of $H$ of size at

most $r\nu(H)$, but it is conjectured that there is always a cover of size at most $(r-1)\nu(H)$.

Tue, 21 Feb 2012

14:30 - 15:30
L3

Lion and Man: Can both win?

Mark Walters
Abstract

Rado introduced the following `lion and man' game in the 1930's: two players (the lion and the man) are in the closed unit disc and they can run at the same speed. The lion would like to catch the man and the man would like to avoid being captured.

This game has a chequered history with several false `winning strategies' before Besicovitch finally gave a genuine winning strategy.

We ask the surprising question: can both players win?

Tue, 14 Feb 2012

14:30 - 15:30
L3

Line arrangements and geometric representations of graphs

Tobias Mueller, Amsterdam
Abstract

A dot product representation of a graph assigns to each vertex $s$ a vector $v(s)$ in ${\bf R}^k$ in such a way that $v(s)^T v(t)$ is greater than $1$ if and only $st$ is an edge. Similarly, in a distance representation $|v(s)-v(t)|$ is less than $1$ if and only if $st$ is an edge.

I will discuss the solution of some open problems by Spinrad, Breu and Kirkpatrick and others on these and related geometric representations of graphs. The proofs make use of a connection to oriented pseudoline arrangements.

(Joint work with Colin McDiarmid and Ross Kang)

Tue, 07 Feb 2012

14:30 - 15:30
L3

Positive projections

Imre Leader (Cambridge)
Abstract

If $A$ is a set of $n$ positive integers, how small can the set

$\{ x/(x,y) : x,y \in A \}$ be? Here, as usual, $(x,y)$ denotes the highest common factor of

$x$ and $y$. This elegant question was raised by Granville and Roesler, who

also reformulated it in the following way: given a set $A$ of $n$ points in

the integer grid ${\bf Z}^d$, how small can $(A-A)^+$, the projection of the difference

set of $A$ onto the positive orthant, be?

Freiman and Lev gave an example to show that (in any dimension) the size can

be as small as $n^{2/3}$ (up to a constant factor). Granville and Roesler

proved that in two dimensions this bound is correct, i.e. that the size is

always at least $n^{2/3}$, and they asked if this holds in any dimension.

After some background material, the talk will focus on recent developments.

Joint work with B\'ela Bollob\'as.

Tue, 31 Jan 2012

14:30 - 15:30
L3

The early evolution of Achlioptas processes

Lutz Warnke
Abstract

In Achlioptas processes, starting from an empty graph, in each step two potential edges are chosen uniformly at random, and using some rule one of them is selected and added to the evolving graph. Although the evolution of such `local' modifications of the Erdös-Rényi random graph processes has received considerable attention during the last decade, so far only rather `simple' rules are well-understood. Indeed, the main focus has been on bounded size rules (where all component sizes larger than some constant B are treated the same way), and for more complex rules hardly any rigorous results are known. In this talk we will discuss a new approach that applies to many involved Achlioptas processes: it allows us to prove that certain key statistics are tightly concentrated during the early evolution of e.g. the sum and product rule.

Joint work with Oliver Riordan.

Tue, 24 Jan 2012

14:30 - 15:30
L3

The phase transition in random graph processes through the lens of PDE and singularity analysis

Mihyun Kang (TU Graz)
Abstract

The phase transition deals with sudden global changes and is observed in many fundamental random discrete structures arising from statistical physics, mathematics and theoretical computer science, for example, Potts models, random graphs and random $k$-SAT. The phase transition in random graphs refers to the phenomenon that there is a critical edge density, to which adding a small amount results in a drastic change of the size and structure of the largest component. In the Erdős--R\'enyi random graph process, which begins with an empty graph on $n$ vertices and edges are added randomly one at a time to a graph, a phase transition takes place when the number of edges reaches $n/2$ and a giant component emerges. Since this seminal work of Erdős and R\'enyi, various random graph processes have been introduced and studied. In this talk we will discuss new approaches to study the size and structure of components near the critical point of random graph processes: key techniques are the classical ordinary differential equations method, a quasi-linear partial differential equation that tracks key statistics of the process, and singularity analysis.

Tue, 22 Nov 2011

14:30 - 15:30
L3

Structure and the Fourier transform

Tom Sanders
(Oxford)
Abstract

We shall discuss how the algebra norm can be used to identify structure in groups. No prior familiarity with the area will be assumed.

Tue, 15 Nov 2011

14:30 - 15:30
L3

Independent sets in hypergraphs

Wojciech Samotij
(Cambridge)
Abstract

We say that a hypergraph is \emph{stable} if each sufficiently large subset of its vertices either spans many hyperedges or is very structured. Hypergraphs that arise naturally in many classical settings posses the above property. For example, the famous stability theorem of Erdos and Simonovits and the triangle removal lemma of Ruzsa and Szemeredi imply that the hypergraph on the vertex set $E(K_n)$ whose hyperedges are the edge sets of all triangles in $K_n$ is stable. In the talk, we will present the following general theorem: If $(H_n)_n$ is a sequence of stable hypergraphs satisfying certain technical conditions, then a typical (i.e., uniform random) $m$-element independent set of $H_n$ is very structured, provided that $m$ is sufficiently large. The above abstract theorem has many interesting corollaries, some of which we will discuss. Among other things, it implies sharp bounds on the number of sum-free sets in a large class of finite Abelian groups and gives an alternate proof of Szemeredi’s theorem on arithmetic progressions in random subsets of integers.

Joint work with Noga Alon, Jozsef Balogh, and Robert Morris.

Tue, 08 Nov 2011

14:30 - 15:30
L3

Embedding trees in sparse graphs

Diana Piguet
(Birmingham)
Abstract

An embedding of a graph H in a graph G is an injective mapping of the vertices of H to the vertices of G such that edges of H are mapped to edges of G. Embedding problems have been extensively studied. A very powerful tool in this area is Szemeredi's Regularity Temma. It approximates the host graph G by a quasirandom graph which inherits many of the properties of G. Unfortunately the direct use of Szemeredi's Regularity Lemma is useless if the host graph G is sparse.

During the talk I shall expose a technique to deal with embedding trees in sparse graphs. This technique has been developed by Ajtai, Komlos,Simonovits and Szemeredi to solve the Erdos-Sos conjecture. Presently the author together with Hladky, Komlos, Simonovits, Stein and Szemeredi apply this method to solve the related conjecture of Loebl, Komlos and Sos (approximate version).

Tue, 25 Oct 2011

14:30 - 15:30
L3

The board game Hex – history, results, problems

Bjarne Toft
(University of Southern Denmark)
Abstract

Hex was discovered independently by Piet Hein in Copenhagen in 1942 and byJohn Nash in Princeton in 1948.  The game is interesting because its rules are very simple, yet it is not known how to play best possible.  For example, a winning first move for the first player (who does have  a winning strategy) is still unknown. The talk will tell the history of the game and give simple proofs for basic results about it. Also the reverse game of HEX,sometimes called REX, will be discussed. New results about REX are under publication in Discrete Mathematics in a paper:  How to play Reverse Hex (joint work with Ryan Hayward and Phillip Henderson).

Tue, 18 Oct 2011

16:00 - 17:00
L1

LMS Aitken Lecture: "Matroid Representation over Infinite Fields"

Professor Geoff Whittle
(Victoria University of Wellington)
Abstract

 

A canonical way to obtain a matroid is from a finite set of vectors in a vector space over a field F. A matroid that can be obtained in such a way is said to be representable over F. It is clear that when Whitney first defined matroids he had matroids representable over the reals as his standard model, but for a variety of reasons most attention has focussed on matroids representable over finite fields.
There is increasing evidence that the class of matroids representable over a fixed finite field is well behaved with strong general theorems holding. Essentially none of these theorems hold if F is infnite. Indeed matroids representable over the real-- the natural matroids for our geometric intuition -- turn out to be a mysterious class indeed. In the talk I will discuss this striking contrast in behaviour.

 

Tue, 18 Oct 2011

14:30 - 15:30
L3

LMS Aitken Lecture: "Well-quasi-ordering Binary Matroids"

Professor Geoff Whittle
(Victoria University of Wellington)
Abstract

The Graph Minors Project of Robertson and Seymour is one of the highlights of twentieth-century mathematics. In a long series of mostly difficult papers they prove theorems that give profound insight into the qualitative structure of members of proper minor-closed classes of graphs. This insight enables them to prove some remarkable banner theorems, one of which is that in any infinite set of graphs there is one that is a minor of the other; in other words, graphs are well-quasi-ordered under the minor order.
A canonical way to obtain a matroid is from a set of columns of a matrix over a field. If each column has at most two nonzero entries there is an obvious graph associated with the matroid; thus it is not hard to see that matroids generalise graphs. Robertson and Seymour always believed that their results were special cases of more general theorems for matroids obtained from matrices over nite elds. For over a decade, Jim Geelen, Bert Gerards and I have been working towards achieving this generalisation. In this talk I will discuss our success in achieving the generalisation for binary matroids, that is, for matroids that can be obtained from matrices over the 2-element field.
In this talk I will give a very general overview of my work with Geelen and Gerards. I will not assume familiarity with matroids nor will I assume familiarity with the results of the Graph Minors Project
Tue, 11 Oct 2011

14:30 - 15:30
L3

Induced graph removal

David Conlon
(Oxford)
Abstract

The induced graph removal lemma states that for any fixed graph $H$ on $h$ vertices and any $e\textgreater 0$ there exists $d\textgreater0$ such that any graph $G$ with at most $d n^h$ induced copies of $H$ may be made $H$-free by adding or removing atmost $e n^2$ edges. This fact was originally proven by Alon, Fischer, Krivelevich and Szegedy. In this talk, we discuss a new proof and itsrelation to various regularity lemmas. This is joint work with Jacob Fox.

Tue, 14 Jun 2011

14:30 - 15:30
L3

Ramsey Classes of Graphs and Beyond

Jaroslav Nesetril
(Prague)
Abstract

It is known that generic and universal structures and Ramsey classes are related. We explain this connection and complement it by some new examples. Particularly we disscuss universal and Ramsey classes defined by existence and non-existence of homomorphisms.

Tue, 07 Jun 2011

14:30 - 15:30
L3

Average-case performance of three-dimensional assignment heuristics

Gregory Sorkin
(LSE)
Abstract

The 2-dimensional assignment problem (minimum cost matching) is solvable in polynomial time, and it is known that a random instance of size n, with entries chosen independently and uniformly at random from [0,1], has expected cost tending to π^2/6.  In dimensions 3 and higher, the "planar" assignment problem is NP-complete, but what is the expected cost for a random instance, and how well can a heuristic do?  In d dimensions, the expected cost is of order at least n^{2-d} and at most ln n times larger, but the upper bound is non-constructive.  For 3 dimensions, we show a heuristic capable of producing a solution within a factor n^ε of the lower bound, for any constant ε, in time of order roughly n^{1/ε}.  In dimensions 4 and higher, the question is wide open: we don't know any reasonable average-case assignment heuristic.