Forthcoming events in this series


Mon, 23 Oct 2023
14:15
L4

Einstein metrics on the Ten-Sphere

Matthias Wink
(Münster)
Abstract

In this talk we give an introduction to the topic of Einstein metrics on spheres. In particular, we prove the existence of three non-round Einstein metrics with positive scalar curvature on $S^{10}.$ Previously, the only even-dimensional spheres known to admit non-round Einstein metrics were $S^6$ and $S^8.$ This talk is based on joint work with Jan Nienhaus.

Mon, 16 Oct 2023
14:15
L4

Vertex algebras from divisors on Calabi-Yau threefolds

Dylan Butson
(Oxford)
Abstract

We construct vertex algebras associated to divisors $S$ in toric Calabi-Yau threefolds $Y$, satisfying conjectures of Gaiotto-Rapcak and Feigin-Gukov, and in particular such that the characters of these algebras are given by a local analogue of the Vafa-Witten partition function of the underlying reduced subvariety $S^{red}$. These results are part of a broader program to establish a dictionary between the enumerative geometry of coherent sheaves on surfaces and Calabi-Yau threefolds, and the representation theory of vertex algebras and affine Yangian-type quantum groups.

Mon, 09 Oct 2023
14:15
L4

How homotopy theory helps to classify algebraic vector bundles

Mura Yakerson
(Oxford)
Abstract

Classically, topological vector bundles are classified by homotopy classes of maps into infinite Grassmannians. This allows us to study topological vector bundles using obstruction theory: we can detect whether a vector bundle has a trivial subbundle by means of cohomological invariants. In the context of algebraic geometry, one can ask whether algebraic vector bundles over smooth affine varieties can be classified in a similar way. Recent advances in motivic homotopy theory give a positive answer, at least over an algebraically closed base field. Moreover, the behaviour of vector bundles over general base fields has surprising connections with the theory of quadratic forms.

Tue, 13 Jun 2023
15:30
L1

Computing vertical Vafa-Witten invariants

Noah Arbesfeld
(Imperial College, London)
Abstract

I'll present a computation in the algebraic approach to Vafa-Witten invariants of projective surfaces, as introduced by Tanaka-Thomas. The invariants are defined by integration over moduli spaces of stable Higgs pairs on surfaces and are formed from contributions of components. The physical notion of S-duality translates to conjectural symmetries between these contributions.  One component, the "vertical" component, is a nested Hilbert scheme on a surface. I'll explain work in preparation with M. Kool and T. Laarakker in which we express invariants of this component in terms of a certain quiver variety, the instanton moduli space of torsion-free framed sheaves on $\mathbb{P}^2$. Using a recent identity of Kuhn-Leigh-Tanaka, we deduce constraints on Vafa-Witten invariants conjectured by Göttsche-Kool-Laarakker. One consequence is a formula for the contribution of the vertical component to refined Vafa-Witten invariants in rank 2.

Mon, 12 Jun 2023
14:15
L4

Resolutions of finite quotient singularities and quiver varieties

Steven Rayan
(quanTA Centre / University of Saskatchewan)
Abstract

Finite quotient singularities have a long history in mathematics, intertwining algebraic geometry, hyperkähler geometry, representation theory, and integrable systems.  I will highlight the correspondences at play here and how they culminate in Nakajima quiver varieties, which continue to attract interest in geometric representation theory and physics.  I will motivate some recent work of G. Bellamy, A. Craw, T. Schedler, H. Weiss, and myself in which we show that, remarkably, all of the resolutions of a particular finite quotient singularity are realized by a certain Nakajima quiver variety, namely that of the 5-pointed star-shaped quiver.  I will place this work in the wider context of the search for McKay-type correspondences for finite subgroups of $\mathrm{SL}(n,\mathbb{C})$ on the one hand, and of the construction of finite-dimensional-quotient approximations to meromorphic Hitchin systems and their integrable systems on the other hand.  The Hitchin system perspective draws upon my prior joint works with each of J. Fisher and L. Schaposnik, respectively. Time permitting, I will speculate upon the symplectic duality of Higgs and Coulomb branches in this setting.

Mon, 05 Jun 2023
14:15
L4

Ancient solutions to the Ricci flow coming out of spherical orbifolds

Alix Deruelle
(Sorbonne Université)
Abstract

Given a 4-dimensional Einstein orbifold that cannot be desingularized by smooth Einstein metrics, we investigate the existence of an ancient solution to the Ricci flow coming out of such a singular space. In this talk, we will focus on singularities modeled on a cone over $\mathbb{R}P^3$ that are desingularized by gluing Eguchi-Hanson metrics to get a first approximation of the flow. We show that a parabolic version of the corresponding obstructed gluing problem has a  smooth solution: the bubbles are shown to grow exponentially in time, a phenomenon that is intimately connected to the instability of such orbifolds. Joint work with Tristan Ozuch.

Mon, 29 May 2023
14:15
L4

Higher algebra of $A_\infty$-algebras in Morse theory

Thibaut Mazuir
(Humboldt Universität zu Berlin)
Abstract

In this talk, I will introduce the notion of $n$-morphisms between two $A_\infty$-algebras. These higher morphisms are such that 0-morphisms correspond to standard $A_\infty$-morphisms and 1-morphisms correspond to $A_\infty$-homotopies. Their combinatorics are encoded by new families of polytopes,  which I call the $n$-multiplihedra and which generalize the standard multiplihedra.
Elaborating on works by Abouzaid and Mescher, I will then explain how this higher algebra of $A_\infty$-algebras naturally arises in the context of Morse theory, using moduli spaces of perturbed Morse gradient trees.

Mon, 22 May 2023
14:15
L4

Stability of weak Cayley fibrations

Gilles Englebert
(University of Oxford)
Abstract

The SYZ conjecture is a geometric way of understanding mirror symmetry via the existence of dual special Lagrangian fibrations on mirror Calabi-Yau manifolds. Motivated by this conjecture, it is expected that $G_2$ and $Spin(7)$-manifolds admit calibrated fibrations as well. I will explain how to construct examples of a weaker type of fibration on compact $Spin(7)$-manifolds obtained via gluing, and give a hint as to why the stronger fibrations are still elusive. The key ingredient is the stability of the weak fibration property under deformation of the ambient $Spin(7)$-structure.

Tue, 16 May 2023
15:30
L2

Topological recursion, exact WKB analysis, and the (uncoupled) BPS Riemann-Hilbert problem

Omar Kidwai
(University of Birmingham)
Abstract
The notion of BPS structure describes the output of the Donaldson-Thomas theory of CY3 triangulated categories, as well as certain four-dimensional N=2 QFTs. Bridgeland formulated a certain Riemann-Hilbert-like problem associated to such a structure, seeking functions in the ℏ plane with given asymptotics whose jumping is controlled by the BPS (or DT) invariants. These appear in the description of natural complex hyperkahler metrics ("Joyce structures") on the tangent bundle of the stability space,and physically correspond to the "conformal limit". 
 
Starting from the datum of a quadratic differential on a Riemann surface X, I'll briefly recall how to associate a BPS structure to it, and explain, in the simplest examples, how to produce a solution to the corresponding Riemann-Hilbert problem using a procedure called topological recursion, together with exact WKB analysis of the resulting "quantum curve". Based on joint work with K. Iwaki.
Mon, 15 May 2023
14:15
L4

Degenerating conic Kähler-Einstein metrics

Henri Guenancia
(CNRS / Institut de Mathématiques de Toulouse)
Abstract

I will discuss a joint work with Olivier Biquard about degenerating conic Kähler-Einstein metrics by letting the cone angle go to zero. In the case where one is given a smooth anticanonical divisor $D$ in a Fano manifold $X$, I will explain how the complete Ricci flat Tian-Yau metric on $X \smallsetminus D$ appears as rescaled limit of such conic KE metrics. 

Mon, 08 May 2023
14:15
L4

The differential geometry of four-dimensional Abelian gauge theory: a new notion of self-duality?

Carlos Shahbazi
(UNED - Madrid)
Abstract

I will construct the differential geometric, gauge-theoretic, and duality covariant model of classical four-dimensional Abelian gauge theory on an orientable four-manifold of arbitrary topology. I will do so by implementing the Dirac-Schwinger-Zwanziger (DSZ) integrality condition in classical Abelian gauge theories with general duality structure and interpreting the associated sheaf cohomology groups geometrically. As a result, I will obtain that four-dimensional Abelian gauge theories are theories of connections on Siegel bundles, namely principal bundles whose structure group is the generically non-abelian disconnected group of automorphisms of an integral affine symplectic torus. This differential-geometric model includes the electric and magnetic gauge potentials on an equal footing and describes the equations of motion through a first-order polarized self-duality condition for the curvature of a connection. This condition is reminiscent of the theory of four-dimensional Euclidean instantons, even though we consider a two-derivative theory in Lorentzian signature. Finally, I will elaborate on various applications of this differential-geometric model, including a mathematically rigorous description of electromagnetic duality in Abelian gauge theory and the reduction of the polarized self-duality condition to a Riemannian three-manifold, which gives as a result a new type of Bogomolny equation.

Mon, 01 May 2023
14:15
L4

Morse theory on moduli spaces of pairs and the Bogomolov-Miyaoka-Yau inequality

Paul Feehan
(Rutgers University)
Abstract

We describe an approach to Bialynicki-Birula theory for holomorphic $\mathbb{C}^*$ actions on complex analytic spaces and Morse-Bott theory for Hamiltonian functions for the induced circle actions. A key principle is that positivity of a suitably defined "virtual Morse-Bott index" at a critical point of the Hamiltonian function implies that the critical point cannot be a local minimum even when it is a singular point in the moduli space. Inspired by Hitchin’s 1987 study of the moduli space of Higgs monopoles over Riemann surfaces, we apply our method in the context of the moduli space of non-Abelian monopoles or, equivalently, stable holomorphic pairs over a closed, complex, Kaehler surface. We use the Hirzebruch-Riemann-Roch Theorem to compute virtual Morse-Bott indices of all critical strata (Seiberg-Witten moduli subspaces) and show that these indices are positive in a setting motivated by a conjecture that all closed, smooth four-manifolds of Seiberg-Witten simple type (including symplectic four-manifolds) obey the Bogomolov-Miyaoka-Yau inequality.

Tue, 25 Apr 2023
15:30

TBA

Andres Ibanez Nunez
(University of Oxford)
Mon, 24 Apr 2023
14:15
L4

Non-Archimedean Green's functions

Sébastien Boucksom
(CNRS / Institut de Mathématiques de Jussieu-Paris Rive Gauche)
Abstract

Pluripotential theory studies plurisubharmonic functions and complex Monge-Ampère equations on complex manifolds, and has played a key role in recent progress on Kähler-Einstein and constant scalar curvature Kähler metrics. This theory admits a non-Archimedean analogue over Berkovich spaces, that can be used to study K-stability. The purpose of this talk is to provide an introduction to this circle of ideas, and to discuss more specifically recent joint work with Mattias Jonsson studying Green's functions in this context.

Mon, 20 Mar 2023
14:15
L3

The asymptotic geometry of the Hitchin moduli space

Laura Fredrickson
(University of Oregon)
Abstract

Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmüller theory, and the geometric Langlands correspondence. The Hitchin moduli space carries a natural hyperkähler metric.  An intricate conjectural description of its asymptotic structure appears in the work of Gaiotto-Moore-Neitzke and there has been a lot of progress on this recently.  I will discuss some recent results using tools coming out of geometric analysis which are well-suited for verifying these extremely delicate conjectures. This strategy often stretches the limits of what can currently be done via geometric analysis, and simultaneously leads to new insights into these conjectures.

Mon, 13 Mar 2023
14:15
L4

Categorical and K-theoretic Donaldson-Thomas theory of $\mathbb{C}^3$

Tudor Pădurariu
(Columbia University)
Abstract

Donaldson-Thomas theory associates integers (which are virtual counts of sheaves) to a Calabi-Yau threefold X. The simplest example is that of $\mathbb{C}^3$, when the Donaldson-Thomas (DT) invariant of sheaves of zero dimensional support and length d is $p(d)$, the number of plane partitions of $d$. The DT invariants have several refinements, for example a cohomological one, where instead of a DT invariant, one studies a graded vector space with Euler characteristic equal to the DT invariant. I will talk about two other refinements (categorical and K-theoretic) of DT invariants, focusing on the explicit case of $\mathbb{C}^3$. In particular, we show that the K-theoretic DT invariant for $d$ points on $\mathbb{C}^3$ also equals $p(d)$. This is joint work with Yukinobu Toda.

Mon, 06 Mar 2023
14:15
L4

Phase transitions with Allen-Cahn mean curvature bounded in $L^p$.

Shengwen Wang
(Queen Mary University)
Abstract

We consider the varifolds associated to phase transitions whose first variation of Allen-Cahn energy is $L^p$ integrable with respect to the energy measure. We can see that the Dirichlet and potential part of the energy are almost equidistributed. After passing to the phase field limit, one can obtain an integer rectifiable varifold with bounded $L^p$ mean curvature. This is joint work with Huy Nguyen.

Mon, 27 Feb 2023
14:15
L4

Equivariant Fukaya categories at singular values

Yankı Lekili
(Imperial College, London)
Abstract

It is well understood by works of Fukaya and Teleman that the Fukaya category of a symplectic reduction at a regular value of the moment map can be computed before taking the quotient as an equivariant Fukaya category. Informed by mirror calculations,  we will give a new geometric interpretation of the equivariant Fukaya category corresponding to a singular value of the moment map where the equivariance is traded with wrapping.

Joint work in progress with Ed Segal.

Mon, 13 Feb 2023
14:15
L4

Some glueing constructions in Lagrangian mean curvature flow

Wei-Bo Su
(University of Warwick)
Abstract

Glueing construction has been used extensively to construct solutions to nonlinear geometric PDEs. In this talk, I will focus on the glueing construction of solutions to Lagrangian mean curvature flow. Specifically, I will explain the construction of Lagrangian translating solitons by glueing a small special Lagrangian 'Lawlor neck' into the intersection point of suitably rotated Lagrangian Grim Reaper cylinders. I will also discuss an ongoing joint project with Chung-Jun Tsai and Albert Wood, where we investigate the construction of solutions to Lagrangian mean curvature flow with infinite time singularities.

Tue, 07 Feb 2023
15:30
L4

Constant Scalar Curvature Metrics on Algebraic Manifolds (Part II)

Sean Timothy Paul
(University of Wisconsin Madison)
Abstract

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle $L$ on a compact complex manifold $X$ should be equivalent to an algebro-geometric "stability condition" satisfied by the pair $(X,L)$. The cscK metrics are the critical points of Mabuchi's $K$-energy functional $M$, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff $M$ satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the $K$-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.

Mon, 06 Feb 2023
14:15
L4

Constant Scalar Curvature Metrics on Algebraic Manifolds

Sean Timothy Paul
(University of Wisconsin Madison)
Abstract

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle $L$ on a compact complex manifold $X$ should be equivalent to an algebro-geometric "stability condition" satisfied by the pair $(X,L)$. The cscK metrics are the critical points of Mabuchi's $K$-energy functional $M$, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff $M$ satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the $K$-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.

Mon, 30 Jan 2023
14:15
L4

Mirror symmetry and big algebras

Tamas Hausel
(IST Austria)
Abstract

First we recall the mirror symmetry identification of the coordinate ring of certain very stable upward flows in the Hitchin system and the Kirillov algebra for the minuscule representation of the Langlands dual group via the equivariant cohomology of the cominuscule flag variety (e.g. complex Grassmannian). In turn we discuss a conjectural extension of this picture to non-very stable upward flows in terms of a big commutative subalgebra of the Kirillov algebra, which also ringifies the equivariant intersection cohomology of the corresponding affine Schubert variety.

Mon, 23 Jan 2023
14:15
L4

Compactified Universal Jacobians over $\overline{\mathcal{M}}_{g,n}$ via GIT

George Cooper
(Oxford University)
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves $\overline{\mathcal{M}}_{g,n}$, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Mon, 16 Jan 2023
14:15
L4

Trivector fields on moduli spaces

Nigel Hitchin
(Oxford University)
Abstract

The moduli space M of stable bundles on a Riemann surface possesses a natural family of holomorphic trivector fields. The talk will introduce these objects with examples and then use them to gain information about the Hochschild cohomology of M.

Mon, 28 Nov 2022
14:15
L5

Monotonicity theorems and how to compare them

Manh Tien Nguyen
(Oxford University)
Abstract

I will present two new results. The first concerns minimal surfaces of the hyperbolic space and is a relation between their renormalised area (in the sense of Graham and Witten) and the length of their ideal boundary measured in different metrics of the conformal infinity. The second result concerns minimal submanifolds of the sphere and is a relation between their volume and antipodal-ness. Both results were obtained from the same framework, which involves new monotonicity theorems and a comparison principle for them. If time permits, I will discuss how to use these to answer questions about uniqueness and non-existence of minimal surfaces.

Mon, 21 Nov 2022
14:15
L5

Cohomological Hall algebras and stable envelopes of Nakajima varieties

Tommaso Maria Botta
(ETH Zurich)
Abstract

Over the last years, two different approaches to construct symmetry algebras acting on the cohomology of Nakajima quiver varieties have been developed. The first one, due to Maulik and Okounkov, exploits certain Lagrangian correspondences, called stable envelopes, to generate R-matrices for an arbitrary quiver and hence, via the RTT formalism, an algebra called Yangian. The second one realises the cohomology of Nakajima varieties as modules over the cohomological Hall algebra (CoHA) of the preprojective algebra of the quiver Q. It is widely expected that these two approaches are equivalent, and in particular that the Maulik-Okounkov Yangian coincides with the Drinfel’d double of the CoHA.

Motivated by this conjecture, in this talk I will show how to identify the stable envelopes themselves with the multiplication map of a subalgebra of the appropriate CoHA. 

As an application, I will introduce explicit inductive formulas for the stable envelopes and use them to produce integral solutions of the elliptic quantum Knizhnik–Zamolodchikov–Bernard (qKZB) difference equation associated to arbitrary quiver (ongoing project with G. Felder and K. Wang). Time permitting, I will also discuss connections with Cherkis bow varieties in relation to 3d Mirror symmetry (ongoing project with R. Rimanyi).

Mon, 14 Nov 2022
14:15
L5

K-theoretic DT/PT invariants on Calabi-Yau 4-(orbi)folds

Sergej Monavari
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Donaldson-Thomas theory is classically defined for moduli spaces of sheaves over a Calabi-Yau threefold. Thanks to recent foundational work of Cao-Leung, Borisov-Joyce and Oh-Thomas, DT theory has been extended to Calabi-Yau 4-folds. We discuss how, in this context, one can define natural K-theoretic refinements of Donaldson-Thomas invariants (counting sheaves on Hilbert schemes) and Pandharipande-Thomas invariants (counting sheaves on moduli spaces of stable pairs) and how — conjecturally — they are related. Finally, we introduce an extension of DT invariants to Calabi-Yau 4-orbifolds, and propose a McKay-type correspondence, which we expect to be suitably interpreted as a wall-crossing phenomenon. Joint work (in progress) with Yalong Cao and Martijn Kool.

Mon, 07 Nov 2022
14:15
L5

Counting sheaves on curves

Chenjing Bu
(Oxford University)
Abstract

I will talk about homological enumerative invariants for vector bundles on algebraic curves. These invariants were defined by Joyce, and encode rich information about the moduli space of semistable vector bundles, such as its volume and intersection numbers, which were computed by Witten, Jeffrey and Kirwan in previous work. I will define a notion of regularization of divergent infinite sums, and I will express the invariants explicitly as such a divergent sum in a vertex algebra.

Mon, 31 Oct 2022
14:15
L5

Closed Ricci Flows with Singularities Modeled on Asymptotically Conical Shrinkers

Max Stolarski
(University of Warwick)
Abstract

Shrinking Ricci solitons are Ricci flow solutions that self-similarly shrink under the flow. Their significance comes from the fact that finite-time Ricci flow singularities are typically modeled on gradient shrinking Ricci solitons. Here, we shall address a certain converse question, namely, “Given a complete, noncompact gradient shrinking Ricci soliton, does there exist a Ricci flow on a closed manifold that forms a finite-time singularity modeled on the given soliton?” We’ll discuss work that shows the answer is yes when the soliton is asymptotically conical. No symmetry or Kahler assumption is required, and so the proof involves an analysis of the Ricci flow as a nonlinear degenerate parabolic PDE system in its full complexity. We’ll also discuss applications to the (non-)uniqueness of weak Ricci flows through singularities.

Mon, 24 Oct 2022
14:15
L5

Hitchin representations and minimal surfaces in symmetric spaces

Nathaniel Sagman
(University of Luxembourg)
Abstract

Labourie proved that every Hitchin representation into PSL(n,R) gives rise to an equivariant minimal surface in the corresponding symmetric space. He conjectured that uniqueness holds as well (this was known for n=2,3), and explained that if true, then the Hitchin component admits a mapping class group equivariant parametrization as a holomorphic vector bundle over Teichmüller space.

In this talk, we will define Hitchin representations, Higgs bundles, and minimal surfaces, and give the background for the Labourie conjecture. We will then explain that the conjecture fails for n at least 4, and point to some future questions and conjectures.

Mon, 17 Oct 2022
14:15
L5

On the inverse problem for isometry groups of norms

Emmanuel Breuillard
(Oxford University)
Abstract

We study the problem of determining when a compact group can be realized as the group of isometries of a norm on a finite dimensional real vector space.  This problem turns out to be difficult to solve in full generality, but we manage to understand the connected groups that arise as connected components of isometry groups. The classification we obtain is related to transitive actions on spheres (Borel, Montgomery-Samelson) on the one hand and to prehomogeneous spaces (Vinberg, Sato-Kimura) on the other. (joint work with Martin Liebeck, Assaf Naor and Aluna Rizzoli)

Mon, 10 Oct 2022
14:15
L5

Quantitative estimates for almost harmonic maps

Melanie Rupflin
(Oxford University)
Abstract

For geometric variational problems one often only has weak, rather than strong, compactness results and hence has to deal with the problem that sequences of (almost) critical points $u_j$ can converge to a limiting object with different topology.

A major challenge posed by such singular behaviour is that the seminal results of Simon on Lojasiewicz inequalities, which are one of the most powerful tools in the analysis of the energy spectrum of analytic energies and the corresponding gradient flows, are not applicable.

In this talk we present a method that allows us to prove Lojasiewicz inequalities in the singular setting of almost harmonic maps that converge to a simple bubble tree and explain how these results allow us to draw new conclusions about the energy spectrum of harmonic maps and the convergence of harmonic map flow for low energy maps from surfaces of positive genus into general analytic manifolds.

Tue, 14 Jun 2022
15:30
Virtual

Co-associative fibrations of $G_{2}$ manifolds: foundations and speculations.

Simon Donaldson
(Imperial College London and SCGP)
Further Information

The talk will be online (Zoom). People who would like to attend the seminar can also meet in person in L3.

Abstract

The introduction to the talk will review basics of $G_{2}$ geometry in seven dimensions, and associative and co-associative submanifolds. In one part of the talk we will explain how fibrations with co-associative fibres, near the “adiabatic limit” when the fibres are very small,  give insights into various questions about moduli spaces of $G_{2}$ structures and singularity formation. This part is mostly speculative. In the other part of the talk we discuss some analysis questions which enter when setting up the foundations of this adiabatic theory. These can be seen as codimension 2 analogues of free boundary problems and related questions have arisen in a number of areas of differential geometry recently.

Mon, 13 Jun 2022
14:15
L5

Open FJRW theory

Mark Gross
(Cambridge)
Abstract

I will describe joint work with Tyler Kelly and Ran Tessler. FJRW (Fan-Jarvis-Ruan-Witten) theory is an enumerative theory of quasi-homogeneous singularities, or alternatively, of Landau-Ginzburg models. It associates to a potential W:C^n -> C given by a quasi-homogeneous polynomial moduli spaces of (orbi-)curves of some genus and marked points along with some extra structure, and these moduli spaces carry virtual fundamental classes as constructed by Fan-Jarvis-Ruan. Here we specialize to the case W=x^r+y^s and construct an analogous enumerative theory for disks. We show that these open invariants provide perturbations of the potential W in such a way that mirror symmetry becomes manifest. Further, these invariants are dependent on certain choices of boundary conditions, but satisfy a beautiful wall-crossing formalism.

Mon, 06 Jun 2022
14:15
L5

Symplectic cohomology of compound Du Val singularities

Jonny Evans
(University of Lancaster)
Abstract

(Joint with Y. Lekili) If someone gives you a variety with a singular point, you can try and get some understanding of what the singularity looks like by taking its “link”, that is you take the boundary of a neighbourhood of the singular point. For example, the link of the complex plane curve with a cusp $y^2 = x^3$ is a trefoil knot in the 3-sphere. I want to talk about the links of a class of 3-fold singularities which come up in Mori theory: the compound Du Val (cDV) singularities. These links are 5-dimensional manifolds. It turns out that many cDV singularities have the same 5-manifold as their link, and to tell them apart you need to keep track of some extra structure (a contact structure). We use symplectic cohomology to distinguish the contact structures on many of these links.

Mon, 30 May 2022
14:15
L5

Drinfeld's conjecture and generalisations

Ana Peón-Nieto
(University of Birmingham)
Abstract

The so called Drinfeld conjecture states that the complement to very stable bundles has pure codimension one in the moduli space of vector bundles. In this talk I will explain a constructive proof in rank three, and discuss if/how it generalises to wobbly fixed points of the nilpotent cone as defined by Hausel and Hitchin. This is joint work with Pauly (Nice).

Mon, 23 May 2022
14:15
L5

Ancient solutions and translators in Lagrangian mean curvature flow

Felix Schulze
(University of Warwick)
Abstract

For almost calibrated Lagrangian mean curvature flow it is known that all singularities are of Type II. To understand the finer structure of the singularities forming, it is thus necessary to understand the structure of general ancient solutions arising as potential limit flows at such singularities. We will discuss recent progress showing that ancient solutions with a blow-down a pair of static planes meeting along a 1-dimensional line are translators. This is joint work with J. Lotay and G. Szekelyhidi.

Mon, 16 May 2022
14:15
L5

Morava K-theory and Hamiltonian loops

Ivan Smith
(Cambridge)
Abstract

A loop of Hamiltonian diffeomorphisms of a symplectic manifold $X$ defines, by clutching, a symplectic fibration over the two-sphere with fibre $X$.  We prove that the integral cohomology of the total space splits additively, answering a question of McDuff, and extending the rational cohomology analogue proved by Lalonde-McDuff-Polterovich in the late 1990’s. The proof uses a virtual fundamental class of moduli spaces of sections of the fibration in Morava K-theory. This talk reports on joint work with Mohammed Abouzaid and Mark McLean.

Mon, 09 May 2022
14:15
L5

Conformally Invariant Energies of Curves and Surfaces

Alexis Michelat
(Oxford University)
Abstract

The integral of mean curvature squared is a conformal invariant of surfaces reintroduced by Willmore in 1965 whose study exercised a tremendous influence on geometric analysis and most notably on minimal surfaces in the last years.


On the other hand, the Loewner energy is a conformal invariant of planar curves introduced by Yilin Wang in 2015 which is notably linked to SLE processes and the Weil-Petersson class of (universal) Teichmüller theory.


In this presentation, after a brief historical introduction, we will discuss some recent developments linking the Willmore energy to the Loewner energy and mention several open problems.


Joint work with Yilin Wang (MIT/MSRI)

Mon, 02 May 2022
14:15
L5

Hypersurfaces with prescribed-mean-curvature: existence and properties

Costante Bellettini
(University College London)
Abstract

Let $N$ be a compact Riemannian manifold of dimension 3 or higher, and $g$ a Lipschitz non-negative (or non-positive) function on $N$. In joint works with Neshan Wickramasekera we prove that there exists a closed hypersurface $M$ whose mean curvature attains the values prescribed by $g$. Except possibly for a small singular set (of codimension 7 or higher), the hypersurface $M$ is $C^2$ immersed and two-sided (it admits a global unit normal); the scalar mean curvature at $x$ is $g(x)$ with respect to a global choice of unit normal. More precisely, the immersion is a quasi-embedding, namely the only non-embedded points are caused by tangential self-intersections: around such a non-embedded point, the local structure is given by two disks, lying on one side of each other, and intersecting tangentially (as in the case of two spherical caps touching at a point). A special case of PMC (prescribed-mean-curvature) hypersurfaces is obtained when $g$ is a constant, in which the above result gives a CMC (constant-mean-curvature) hypersurface for any prescribed value of the mean curvature.

Mon, 25 Apr 2022
14:15
L5

Ricci flows with nonstandard initial data

Peter Topping
(University of Warwick)
Abstract

Most Ricci flow theory takes the short-time existence of solutions as a starting point and ends up concerned with understanding the long-time limiting behaviour and the structure of any finite-time singularities that may develop along the way. In this talk I will look at what you can think of as singularities at time zero. I will describe some of the situations in which one would like to start a  Ricci flow with a space that is rougher than a smooth bounded curvature Riemannian manifold, and some of the situations in which one considers smooth initial data that is only achieved in a non-smooth way. A particularly interesting and useful case is the problem of starting a Ricci flow on a Riemann surface equipped with a measure. I will not be assuming expertise in Ricci flow theory. Parts of the talk are joint with either Hao Yin (USTC) or ManChun Lee (CUHK).

Mon, 07 Mar 2022
14:15
L5

Brakke Regularity for the Allen--Cahn Flow

Huy The Nguyen
(Queen Mary University, London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

In this talk we prove an analogue of the Brakke's $\epsilon$-regularity theorem for the parabolic Allen--Cahn equation. In particular, we show uniform $C^{2,\alpha}$ regularity for the transition layers converging to smooth mean curvature flows as $\epsilon\rightarrow 0$. A corresponding gap theorem for entire eternal solutions of the parabolic Allen--Cahn is also obtained. As an application of the regularity theorem, we give an affirmative answer to a question of Ilmanen that there is no cancellation in BV convergence in the mean convex setting.

Mon, 28 Feb 2022
14:15
L5

Chow quotients and geometric invariant theoretic quotients for group actions on complex projective varieties

Frances Kirwan
(University of Oxford)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

When a reductive group G acts on a complex projective variety
X, there exist different methods for finding an open G-invariant subset
of X with a geometric quotient (the 'stable locus'), which is a
quasi-projective variety and has a projective completion X//G. Mumford's
geometric invariant theory (GIT) developed in the 1960s provides one way
to do this, given a lift of the action to an ample line bundle on X,
though with no guarantee that the stable locus is not empty. An
alternative approach due to Kapranov and others in the 1990s is to use
Chow varieties to define a 'Chow quotient' X//G. The aim of this talk is
to review the relationship between these constructions for reductive
groups, and to discuss the situation when G is not reductive.

Mon, 21 Feb 2022
14:15
L5

Anti-self-dual instantons and codimension-1 collapse

Lorenzo Foscolo
(University College London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

We study the behaviour of anti-self-dual instantons on $\mathbb{R}^3 \times S^1$ (also known as calorons) under codimension-1 collapse, i.e. when the circle factor shrinks to zero length. In this limit, the instanton equation reduces to the well-known Bogomolny equation of magnetic monopoles on $\mathbb{R}^3 $. However, inspired by work of Kraan and van Baal in the mathematical physics literature, we show how $SU(2)$ instantons can be realised as superpositions of monopoles and "rotated monopoles" glued into a singular background abelian configuration consisting of Dirac monopoles of positive and negative charges. I will also discuss generalisations of the construction to calorons with arbitrary structure group and potential applications to the hyperkähler geometry of moduli spaces of calorons. This is joint work with Calum Ross.

Mon, 14 Feb 2022
14:15
L5

Quiver varieties and moduli spaces attached to Kleinian singularities

Søren Gammelgaard
(University of Oxford)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

Let $\Gamma$ be a finite subgroup of $SL(2, \mathbb{C})$. We can attach several different moduli spaces to the action of $\Gamma$ on $\mathbb{C}^2$, and we show how Nakajima's quiver varieties provide constructions of them. The definition of such a quiver variety depends on a stability parameter, and we are especially interested in what happens when this parameter moves into a specific ray in its associated wall-and-chamber structure. Some of the resulting quiver varieties can be understood as moduli spaces of certain framed sheaves on an appropriate stacky compactification of the Kleinian singularity $\mathbb{C}^2/\Gamma$. As a special case, this includes the punctual Hilbert schemes of $\mathbb{C}^2/\Gamma$.

Much of this is joint work with A. Craw, Á. Gyenge, and B. Szendrői.

Mon, 07 Feb 2022
14:15
L5

Nonabelian Hodge theory and the decomposition theorem for 2-CY categories

Ben Davison
(Edinburgh)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

Examples of 2CY categories include the category of coherent sheaves on a K3 surface, the category of Higgs bundles, and the category of modules over preprojective algebras or fundamental group algebras of compact Riemann surfaces.  Let p:M->N be the morphism from the stack of semistable objects in a 2CY category to the coarse moduli space.  I'll explain, using cohomological DT theory, formality in 2CY categories, and structure theorems for good moduli stacks, how to prove a version of the BBDG decomposition theorem for the exceptional direct image of the constant sheaf along p, even though none of the usual conditions for the decomposition theorem apply: p isn't projective or representable, M isn't smooth, the constant mixed Hodge module complex Q_M isn't pure...  As an application, I'll explain how this allows us to extend nonabelian Hodge theory to Betti/Dolbeault stacks.

Mon, 31 Jan 2022
14:15
Virtual

D-critical locus structure for local toric Calabi-Yau 3-folds

Yun Shi
(Harvard University)
Abstract

Donaldson-Thomas (DT) theory is an enumerative theory which produces a virtual count of stable coherent sheaves on a Calabi-Yau 3-fold. Motivic Donaldson-Thomas theory, originally introduced by Kontsevich-Soibelman, is a categorification of the DT theory. This categorification contains more refined information of the moduli space. In this talk, I will explain the role of d-critical locus structure in the definition of motivic DT invariant, following the definition by Bussi-Joyce-Meinhardt. I will also discuss results on this structure on the Hilbert schemes of zero dimensional subschemes on local toric Calabi-Yau threefolds. This is based on joint works with Sheldon Katz. The results have substantial overlap with recent work by Ricolfi-Savvas, but techniques used here are different. 

Mon, 24 Jan 2022
14:15
Virtual

Cayley fibrations in the Bryant-Salamon manifolds

Federico Trinca
(University of Oxford)
Abstract

In 1989, Bryant and Salamon constructed the first Riemannian manifolds with holonomy group $\Spin(7)$. Since a crucial aspect in the study of manifolds with exceptional holonomy regards fibrations through calibrated submanifolds, it is natural to consider such objects on the Bryant-Salamon manifolds.

In this talk, I will describe the construction and the geometry of (possibly singular) Cayley fibrations on each Bryant-Salamon manifold. These will arise from a natural family of structure-preserving $\SU(2)$ actions. The fibres will provide new examples of Cayley submanifolds.

Tue, 18 Jan 2022
15:30
Virtual

TBA

Stephan Stadler
(Max Planck Institute Bonn)
Abstract

TBA