Mon, 01 Dec 2008
14:15
14:15
L3
Forthcoming events in this series
Let M be a closed spin manifold.
Gromov and Lawson have shown that the presence of certain "enlargeable"
submanifolds of codimension 2 is an obstruction to the existence of a Riemannian metric with positive scalar curvature on M.
In joint work with Hanke, we refine the geoemtric condition of
"enlargeability": it suffices that a K-theoretic index obstruction of the submanifold doesn't vanish.
A "folk conjecture" asserts that all index type obstructions to positive scalar curvature should be read off from the corresponding index for the ambient manifold M (this this is equivalent to a small part of the strong Novikov conjecture). We address this question for the obstruction above and discuss partial results.