Forthcoming events in this series


Tue, 22 Oct 2019

12:45 - 14:00
C5

Numerical Simulations using Approximate Random Numbers

Oliver Sheridan-Methven
(Oxford University)
Abstract

Introducing cheap function proxies for quickly producing approximate random numbers, we show convergence of modified numerical schemes, and coupling between approximation and discretisation errors. We bound the cumulative roundoff error introduced by floating-point calculations, valid for 16-bit half-precision (FP16). We combine approximate distributions and reduced-precisions into a nested simulation framework (via multilevel Monte Carlo), demonstrating performance improvements achieved without losing accuracy. These simulations predominantly perform most of their calculations in very low precisions. We will highlight the motivations and design choices appropriate for SVE and FP16 capable hardware, and present numerical results on Arm, Intel, and NVIDIA based hardware.

 

Tue, 18 Jun 2019

12:45 - 14:00
C3

Multi-armed bandit under uncertainty

Tanut Treetanthiploet
(Oxford University)
Abstract

In a robust decision, we are pessimistic toward our decision making when the probability measure is unknown. In particular, we optimise our decision under the worst case scenario (e.g. via value at risk or expected shortfall).  On the other hand, most theories in reinforcement learning (e.g. UCB or epsilon-greedy algorithm) tell us to be more optimistic in order to encourage learning. These two approaches produce an apparent contradict in decision making. This raises a natural question. How should we make decisions, given they will affect our short-term outcomes, and information available in the future?

In this talk, I will discuss this phenomenon through the classical multi-armed bandit problem which is known to be solved via Gittins' index theory under the setting of risk (i.e. when the probability measure is fixed). By extending this result to an uncertainty setting, we can show that it is possible to take into account both uncertainty and learning for a future benefit at the same time. This can be done by extending a consistent nonlinear expectation  (i.e. nonlinear expectation with tower property) through multiple filtrations.

At the end of the talk, I will present numerical results which illustrate how we can control our level of exploration and exploitation in our decision based on some parameters.
 

Tue, 04 Jun 2019

12:45 - 14:00
C3

Multiple scales analysis of a conductive-radiative thermal transfer model

Caoimhe Rooney
(University of Oxford)
Abstract


Multiple scales analysis is a powerful asymptotic technique for problems where the solution depends on two scales of widely different sizes. Standard multiple scales involves the introduction of a macroscale and microscale which are assumed to be independent. A common (and usually acceptable) assumption is that when considering behaviour on the microscale, the macroscale variable can be taken as constant, however there are instances where this assumption is not valid. In this talk, I will explain one such situation, that is, when considering conductive-radiative thermal transfer within a solid matrix with spherical perforations and discuss the appropriate measures when converting the radiative boundary condition into multiple-scales form.
 

Tue, 21 May 2019

12:45 - 14:00
C3

Optimising the parallel picking strategy for a Besi component wafer

Jonathan Grant-Peters
(University of Oxford)
Abstract

The time bottleneck in the manufacturing process of Besi (company involved in ESGI 149 Innsbruck) is the extraction of undamaged dies from a component wafer. The easiest way for them to speed up this process is to reduce the number of 'selections' made by the robotic arm.  Each 'selection' made by this robotic arm can be thought of as choosing a 2x2 submatix of a large binary matrix, and editing the 1's in this submatrix to be 0's.  The quesiton is: what is the fewest number of 2x2 submatrices required to cover the full matrix, and how can we find this number. This problem can be solved exactly using integer programming methods, although this approach proves to be prohibitively expensive for realistic sizes. In this talk I will describe the approach taken by my team at EGSI 149, as well as directions for further improvement.

Tue, 07 May 2019
11:45
C3

When Zeno met Pontryagin: a curious phenomenon in optimal control

Davin Lunz
(Oxford University)
Further Information

 

 
Abstract

I plan to present a brief introduction to optimal control theory (no background knowledge assumed), and discuss a fascinating and oft-forgotten family of problems where the optimal control behaves very strangely; it changes state infinitely often in finite time. This causes havoc in practice, and even more so in the literature.
 

Tue, 05 Mar 2019

12:45 - 13:30
C3

Modelling Magnetically Targeted Stem Cell Delivery

Edwina Yeo
(Oxford University)
Abstract

The development of an effective method of targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. However, production of stem cells is costly and current delivery methods rely on large doses in order to be effective. Improved targeting through use of an external magnetic field to direct delivery of magnetically-tagged stem cells to the injury site would allow for smaller doses to be used.
We present a model for delivery of stem cells implanted with a fixed number of magnetic nanoparticles under the action of an external magnetic field. We examine the effect of magnet geometry and strength on therapy efficacy. The accuracy of the mathematical model is then verified against experimental data provided by our collaborators at the University of Birmingham.

Tue, 19 Feb 2019

12:45 - 13:30
C3

Model of a cycling coexistence of viral strains and a survival of the specialist

Anel Nurtay
Abstract

With growing population of humans being clustered in large cities and connected by fast routes more suitable environments for epidemics are being created. Topped by rapid mutation rate of viral and bacterial strains, epidemiological studies stay a relevant topic at all times. From the beginning of 2019, the World Health Organization publishes at least five disease outbreak news including Ebola virus disease, dengue fever and drug resistant gonococcal infection, the latter is registered in the United Kingdom.

To control the outbreaks it is necessary to gain information on mechanisms of appearance and evolution of pathogens. Close to all disease-causing virus and bacteria undergo a specialization towards a human host from the closest livestock or wild fauna of a shared habitat. Every strain (or subtype) of a pathogen has a set of characteristics (e.g. infection rate and burst size) responsible for its success in a new environment, a host cell in case of a virus, and with the right amount of skepticism that set can be framed as fitness of the pathogen. In our model, we consider a population of a mutating strain of a virus. The strain specialized towards a new host usually remains in the environment and does not switch until conditions get volatile. Two subtypes, wild and mutant, of the virus share a host. This talk will illustrate findings on an explicitly independent cycling coexistence of the two subtypes of the parasite population. A rare transcritical bifurcation of limit cycles is discussed. Moreover, we will find conditions when one of the strains can outnumber and eventually eliminate the other strain focusing on an infection rate as fitness of strains.

Tue, 05 Feb 2019

12:45 - 13:30
C3

A Boundary Layer Analysis for the Initiation of Reactive Shear Bands

Robert Timms
(Oxford University)
Abstract

Unintended low energy thermal or mechanical stimuli can lead to the accidental ignition of explosive materials. During such events, described as ‘insults’ in the literature, ignition of the explosive is caused by localised regions of high temperature known as ‘hot spots’. We develop a model which helps us to understand how highly localised shear deformation, so-called shear banding, acts as a mechanism for hot spot generation. Through a boundary layer analysis, we give a deeper insight into how the additional self heating caused by chemical reactions affects the initiation and development of shear bands,  and highlight the key physical properties which control this process.

Tue, 22 Jan 2019

12:45 - 13:30
C5

Wave attenuation by flexible vegetation

Clint Wong
(Oxford University)
Abstract

Coastal vegetation has a well-known effect of attenuating waves; however, quantifiable measures of attenuation for general wave and vegetation scenarios are not well known. On the plant scale, there are extensive studies in predicting the dynamics of a single plant in an oscillatory flow. On the coastal scale however, there are yet to be compact models which capture the dynamics of both the flow and vegetation, when the latter exists in the form of a dense canopy along the bed. In this talk, we will discuss the open questions in the field and the modelling approaches involved. In particular, we investigate how micro-scale effects can be homogenised in space and how periodic motions can be averaged in time.

Tue, 27 Nov 2018

12:45 - 13:30
C5

Wrinkling of Elastic Bilayers

Hamza Alawiye
(Oxford)
Abstract

Wrinkling is a universal instability occurring in a wide variety of engineering and biological materials. It has been studied extensively for many different systems but a full description is still lacking. Here, we provide a systematic analysis of the wrinkling of a thin hyperelastic film over a substrate in plane strain using stream functions. For comparison, we assume that wrinkling is generated either by the isotropic growth of the film or by the lateral compression of the entire system. We perform an exhaustive linear analysis of the wrinkling problem for all stiffness ratios and under a variety of additional boundary and material effects.

Tue, 13 Nov 2018

12:45 - 13:30
C5

Nucleation, Bubble Growth and Coalescence

Victoria Pereira
(Mathematical Institute/Engineering)
Abstract

In gas-liquid two-phase pipe flows, flow regime transition is associated with changes in the micro-scale geometry of the flow. In particular, the bubbly-slug transition is associated with the coalescence and break-up of bubbles in a turbulent pipe flow. We consider a sequence of models designed to facilitate an understanding of this process. The simplest such model is a classical coalescence model in one spatial dimension. This is formulated as a stochastic process involving nucleation and subsequent growth of ‘seeds’, which coalesce as they grow. We study the evolution of the bubble size distribution both analytically and numerically. We also present some ideas concerning ways in which the model can be extended to more realistic two- and three-dimensional geometries.

Tue, 30 Oct 2018

12:45 - 13:30
C5

Riding through glue: the aerodynamics of performance cycling

Alex Bradley
(Dept of Mathematical Sciences)
Abstract

As a rule of thumb, the dominant resistive force on a cyclist riding along a flat road at a speed above 10mph is aerodynamic drag; at higher speeds, this drag becomes even more influential because of its non-linear dependence on speed. Reducing drag, therefore, is of critical importance in bicycle racing, where winning margins are frequently less than a tyre's width (over a 200+km race!). I shall discuss a mathematical model of aerodynamic drag in cycling, present mathematical reasoning behind some of the decisions made by racing cyclists when attempting to minimise it, and touch upon some of the many methods of aerodynamic drag assessment.

Tue, 12 Jun 2018

12:45 - 13:30
C5

Scalable Least-Squares Minimisation for Bundle Adjustment Problems

Lindon Roberts
Abstract

Structure from Motion (SfM) is a problem which asks: given photos of an object from different angles, can we reconstruct the object in 3D? This problem is important in computer vision, with applications including urban planning and autonomous navigation. A key part of SfM is bundle adjustment, where initial estimates of 3D points and camera locations are refined to match the images. This results in a high-dimensional nonlinear least-squares problem. In this talk, I will discuss how dimensionality reduction methods such as block coordinates and sketching can be used to improve solver scalability for bundle adjustment problems.

Tue, 29 May 2018

12:45 - 13:30
C5

Homogenisation Applied to Electrical Calcination of Carbon Materials

Caoimhe Rooney
Abstract

Calcination describes the heat treatment of anthracite particles in a furnace to produce a partially-graphitised material which is suitable for use in electrodes and for other met- allurgical applications. Electric current is passed through a bed of anthracite particles, here referred to as a coke bed, causing Ohmic heating and high temperatures which result in the chemical and structural transformation of the material.

Understanding the behaviour of such mechanisms on the scale of a single particle is often dealt with through the use of computational models such as DEM (Discrete Element Methods). However, because of the great discrepancy between the length scale of the particles and the length scale of the furnace, we can exploit asymptotic homogenisation theory to simplify the problem.  

In this talk, we will present some results relating to the electrical and thermal conduction through granular material which define effective quantities for the conductivities by considering a microscopic representative volume within the material. The effective quantities are then used as parameters in the homogenised macroscopic model to describe calcination of anthracite. 

Tue, 15 May 2018

12:45 - 13:30
C5

Complex singularities near the intersection of a free-surface and a rigid wall

Thomas Chandler
Abstract

It is known that in steady-state potential flows, the separation of a gravity-driven free-surface from a solid exhibits a number of peculiar characteristics. For example, it can be shown that the fluid must separate from the body so as to form one of three possible in-fluid angles: (i) 180°, (ii) 120°, or (iii) an angle such that the surface is locally perpendicular to the direction of gravity. These necessary separation conditions were notably remarked by Dagan & Tulin (1972) in the context of ship hydrodynamics [J. Fluid Mech., 51(3) pp. 520-543], but they are of crucial importance in many potential flow applications. It is not particularly well understood why there is such a drastic change in the local separation behaviours when the global flow is altered. The question that motivates this work is the following: outside a formal balance-of-terms arguments, why must (i) through (iii) occur and furthermore, what is the connections between them?

              In this work, we seek to explain the transitions between the three cases in terms of the singularity structure of the associated solutions once they are extended into the complex plane. A numerical scheme is presented for the analytic continuation of a vertical jet (or alternatively a rising bubble). It will be shown that the transition between the three cases can be predicted by observing the coalescence of singularities as the speed of the jet is modified. A scaling law is derived for the coalescence rate of singularities.

Tue, 01 May 2018

12:45 - 13:30
C5

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(University of Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD)
algorithm has proven to be an efficient, reliable alternative to classical
algorithms for computing low-rank approximations in a number of applications.
However, in cases where no information is available on the singular value
decay of the data matrix or the data matrix is known to be close to full-rank,
the RSVD is ineffective. In recent years, there has been great interest in
randomized algorithms for computing full factorizations that excel in this
regime.  In this talk, we will give a brief overview of some key ideas in
randomized numerical linear algebra and introduce a new randomized algorithm for
computing a full, rank-revealing URV factorization.

Tue, 06 Mar 2018

12:45 - 13:30
C5

Modelling the collective migration of neural crest cells

Rasa Giniunaite
(Mathematical Institute, University of Oxford)
Abstract

Collective neural crest (NC) cell migration determines the formation of peripheral tissues during vertebrate development. If NC cells fail to reach a target or populate an incorrect location, improper cell differentiation or uncontrolled cell proliferation can occur. Therefore, knowledge of embryonic cell migration is important for understanding birth defects and tumour formation. However, the response of NC cells to different stimuli, and their ability to migrate to distant targets, are still poorly understood. Recently, experimental and computational studies have provided evidence that there are at least two subpopulations of NC cells, namely “leading” and “trailing” cells, with potential further differentiation between the cells in these subpopulations [1,2]. The main difference between these two cell types is the mechanism driving motility and invasion: the leaders follow the gradient of a chemoattractant, while the trailing cells follow “gradients” of the leaders. The precise mechanisms underlying these leader-follower interactions are still unclear.

We develop and apply innovative multi-scale modelling frameworks to analyse signalling effects on NC cell dynamics. We consider different potential scenarios and investigate them using an individual-based model for the cell motility and reaction-diffusion model to describe chemoattractant dynamics. More specifically, we use a discrete self-propelled particle model [3] to capture the interactions between the cells and incorporate volume exclusion. Streaming migration is represented using an off-lattice model to generate realistic cell arrangements and incorporate nonlinear behaviour of the system, for example the coattraction between cells at various distances. The simulations are performed using Aboria, which is a C++ library for the implementation of particle-based numerical methods [4]. The source of chemoattractant, the characteristics of domain growth, and types of boundary conditions are some other important factors that affect migration. We present results on how robust/sensitive cells invasion is to these key biological processes and suggest further avenues of experimental research.

 

[1] R. McLennan, L. Dyson, K. W. Prather, J. A. Morrison, R.E. Baker, P. K. Maini and P. M. Kulesa. (2012). Multiscale mechanisms of cell migration during development: theory and experiment, Development, 139, 2935-2944.

[2] R. McLennan, L. J. Schumacher, J. A. Morrison, J. M. Teddy, D. A. Ridenour, A. C. Box, C. L. Semerad, H. Li, W. McDowell, D. Kay, P. K. Maini, R. E. Baker and P. M. Kulesa. (2015). Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front, Development, 142, 2014-2025.

[3] G. Grégoire, H. Chaté and Y Tu. (2003). Moving and staying together without a leader, Physica D: Nonlinear Phenomena, 181, 157-170.

[4] M. Robinson and M. Bruna. (2017). Particle-based and meshless methods with Aboria, SoftwareX, 6, 172-178. Online documentation https://github.com/martinjrobins/Aboria.

Tue, 20 Feb 2018

12:45 - 13:30
C5

Modular Structure in Temporal Protein Interaction Networks

Florian Klimm
(Mathematical Institute, University of Oxford)
Abstract

Protein interaction networks (PINs) allow the representation and analysis of biological processes in cells. Because cells are dynamic and adaptive, these processes change over time. Thus far, research has focused either on the static PIN analysis or the temporal nature of gene expression. By analysing temporal PINs using multilayer networks, we want to link these efforts. The analysis of temporal PINs gives insights into how proteins, individually and in their entirety, change their biological functions. We present a general procedure that integrates temporal gene expression information with a monolayer PIN to a temporal PIN and allows the detection of modular structure using multilayer modularity maximisation.

Tue, 23 Jan 2018

12:45 - 13:30
C5

Water Wave Absorption

Helen Fletcher
(Oxford University)
Abstract

We are all familiar with the need for continuum mechanics-based models in physical applications. In this case, we are interested in large-scale water-wave problems, such as coastal flows and dam breaks.
When modelling these problems, we inevitably wish to solve them on a finite domain, and require boundary conditions to do so. Ideally, we would recreate the semi-infinite nature of a coastline by allowing any generated waves to flow out of the domain, as opposed to them reflecting off the far-field boundary and disrupting the remainder of our simulation. However, applying an appropriate boundary condition is not as straightforward as we might think.
In this talk, we aim to evaluate alternatives to so-called 'active boundary condition' absorption. We will derive a toy model of a shallow-water wavetank, and consider the implementation and efficacy of two 'passive' absorption techniques.
 

Tue, 28 Nov 2017

12:45 - 13:30
C5

Passive control of viscous flow via elastic snap-through

Michael Gomez
(Mathematical Institute)
Abstract

Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another, just as an umbrella flips upwards in a gust of wind. While snap-through under dry, mechanical loads has already been harnessed in engineering to generate fast motions between two states, the mechanisms underlying snapping in bulk fluid flows remain relatively unexplored. In this talk we demonstrate how elastic snap-through may be used to passively control fluid flows at low Reynolds number, in contrast to some pre-existing valves that rely on active control. We study viscous flow through a channel in which one of the bounding walls is an elastic arch. By performing experiments at the macroscopic scale, we show that snap-through of the arch rapidly changes the channel from a constricted to an unconstricted state, increasing the hydraulic conductivity by up to an order of magnitude. We also observe nonlinear pressure-flux characteristics away from snapping due to the coupling between the driving flow and elasticity. This behaviour is confirmed by a mathematical model that also shows the device may readily be scaled down for microfluidic applications. Finally, we demonstrate that such a device may be used to create a fluidic analogue of a fuse: the fluid flux through a channel may not rise above a given value. 

Tue, 14 Nov 2017

12:45 - 13:30
C5

A Bio-inspired Design for a Switchable Elastocapillary Adhesive

Matt Butler
(Mathematical Institute, University of Oxford)
Abstract

Many species of insects adhere to vertical and inverted surfaces using footpads that secrete thin films of a mediating fluid. The fluid bridges the gap between the foot and the target surface. The precise role of this liquid is still subject to debate, but it is thought that the contribution of surface tension to the adhesive force may be significant. It is also known that the footpad is soft, suggesting that capillary forces might deform its surface. Inspired by these physical ingredients, we study a model problem in which a thin, deformable membrane under tension is adhered to a flat, rigid surface by a liquid droplet. We find that there can be multiple possible equilibrium states, with the number depending on the applied tension and aspect ratio of the system. The presence of elastic deformation significantly enhances the adhesion force compared to a rigid footpad. A mathematical model shows that the equilibria of the system can be controlled via two key parameters depending on the imposed separation of the foot and target surface, and the tension applied to the membrane. We confirm this finding experimentally and show that the system may transition rapidly between two states as the two parameters are varied. This suggests that different strategies may be used to adhere strongly and then detach quickly.

Tue, 17 Oct 2017
12:45
C5

Analysis of small contacts between particles in a furnace

Caoimhe Rooney
(Mathematical Institute, University of Oxford)
Abstract

Many metallurgical processes involve the heat treatment of granular material due to large alternating currents. To understand how the current propagates through the material, one must understand the bulk resistivity, that is, the resistivity of the granular material as a whole. The literature suggests that the resistance due to contacts between particles contributes significantly to the bulk resistivity, therefore one must pay particular attention to these contacts. 

My work is focused on understanding the precise impact of small contacts on the current propagation. The scale of the contacts is several order of magnitude smaller than that of the furnace itself, therefore we apply matched asymptotics methods to study how the current varies with the size of the contact.

Tue, 13 Jun 2017

12:45 - 13:30
C5

Modelling Lead-acid batteries for off-grid energy storage systems

Tino Sulzer
(Mathematical Institute)
Abstract

One of the greatest challenges in developing renewable energy sources is finding an efficient energy storage solution to smooth out the inherently fluctuating supply. One cheap solution is lead-acid batteries, which are used to provide off-grid solar energy in developing countries. However, modelling of this technology has fallen behind other types of battery; the state-of-the-art models are either overly simplistic, fitting black-box functions to current and voltage data, or overly complicated, requiring complex and time-consuming numerical simulations. Neither of these methods offers great insight into the chemical behaviour at the micro-scale.

In our research, we use asymptotic methods to explore the Newman porous-electrode model for a constant-current discharge at low current densities, a good estimate for real-life applications. In this limit, we obtain a simple yet accurate formula for the cell voltage as a function of current density and time. We also gain quantitative insight into the effect of various parameters on this voltage. Further, our model allows us to quantitatively investigate the effect of ohmic resistance and mass transport limitations, as a correction to the leading order cell voltage. Finally, we explore the effect on cell voltage of other secondary phenomena, such as growth of a discharge-product layer in the pores and reaction-induced volume changes in the electrolyte.

Tue, 30 May 2017

12:45 - 13:30
C5

Vanishing viscosity limit of the Navier--Stokes equation on 3D smooth domains with Navier boundary condition

Siran Li
(Mathematical Institute)
Abstract

In this talk we consider the limiting behaviour of the strong solution of the Navier--Stokes equation as the viscosity goes to zero, on a three--dimensional region with curved boundary. Under the Navier and kinematic boundary conditions, we show that the solution converges to that of the Euler equation (in suitable topologies). The proof is based on energy estimates and differential--geometric considerations. This is a joint work with Profs. Gui-Qiang Chen and Zhongmin Qian, both at Oxford. 

Tue, 16 May 2017

12:45 - 13:30
C5

Pattern Formation in Non-Local Systems with Cross-Diffusion

Markus Schmidtchen
(Imperial College London)
Abstract

Multi-agent systems in nature oftentimes exhibit emergent behaviour, i.e. the formation of patterns in the absence of a leader or external stimuli such as light or food sources. We present a non-local two species crossinteraction model with cross-diffusion and explore its long-time behaviour. We observe a rich zoology of behaviours exhibiting phenomena such as mixing and/or segregation of both species and the formation of travelling pulses.

Tue, 02 May 2017

12:45 - 13:15
C5

Numerical Methods and Preconditioning for Reservoir Simulation

Thomas Roy
(Mathematical Institute)
Abstract

In this presentation, we give an overview of the numerical methods used in commercial oil and gas reservoir simulation. The models are described by flow through porous media and are solved using a series of nested numerical methods. Most of the computational effort resides in solving large linear systems resulting from Newton iterations. Therefore, we will go in greater detail about the iterative linear solvers and preconditioning techniques.

Note: This talk will cover similar topics to the InFoMM group meeting talks on Friday 28th April, but I will discuss more mathematical details for this JAMS talk.

Tue, 24 Jan 2017

12:30 - 13:00
C5

Modelling congestion in supermarkets via queuing networks

Fabian Ying
(University of Oxford)
Abstract

In this talk, I will talk about my current approach to model customer movements and in particular congestion inside supermarkets using queuing networks. As the research question for my project is ‘How should one design supermarkets to minimize congestion?’, I will then talk about my current progress in understanding how the network structure can affect this dynamics.

Tue, 29 Nov 2016

12:45 - 13:30
C5

Community Detection in Annotated Bipartite Networks

Roxana Pamfil
(University of Oxford)
Abstract

A successful programme of personalised discounts and recommendations relies on identifying products that customers want, based both on items bought in the past and on relevant products that the customers have not yet purchased. Using basket-level grocery shopping data, we aim to use clustering ("community detection") techniques to identify groups of shoppers with similar preferences, along with the corresponding products that they purchase, in order to design better recommendation systems.


Stochastic block models (SBMs) are an increasingly popular class of methods for community detection. In this talk, I will expand on some work done by Newman and Clauset [1] that uses a modified SBM for community detection in annotated networks. In these networks, additional information in the form of node metadata is used to improve the quality of the inferred community structure. The method can be extended to bipartite networks, which contain two types of nodes and edges only between nodes of different types. I will show some results obtained from applying this method to a bipartite network of customers and products. Finally, I will discuss some desirable extensions to this method such as incorporating edge weights and assessing the relationship between metadata and network structure in a statistically robust way.


[1] Structure and inference in annotated networks, MEJ Newman and A Clauset, Nature Communications 7, 11863 (2016).


Note: This talk will cover similar topics to my presentation in the InFoMM group meeting on Friday, November 25 but it won't be exactly the same. I will focus more on the mathematical details for my JAMS talk.
 

Tue, 01 Nov 2016

12:45 - 13:30
C5

Stretching and deformation of thin viscous sheets: glass redraw through a long heater zone

Doireann O'Kiely
(University of Oxford)
Abstract

Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by first producing a relatively thick glass slab (known as a preform) and subsequently redrawing it to a required thickness. Theoretically, if the sheet is redrawn through an infinitely long heater zone, a product with the same aspect ratio as the preform may be manufactured. However, in reality the effect of surface tension and the restriction to factories of finite size prevent this. In this talk I will present a mathematical model for a viscous sheet undergoing redraw, and use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to investigate how the product shape is affected by process parameters. 

Tue, 18 Oct 2016

12:45 - 13:30
C5

Scalable Two-Phase Flow Solvers

Niall Bootland
(University of Oxford)
Abstract

My research focuses on numerical techniques that help provide scalable computation within simulations of two-phase fluid flow problems. The efficient solution of the linear systems which arise is key to obtaining practical computation. I will motivate and discuss new methods which seek to generalise effective techniques for a single phase to the more challenging setting of two-phase flow where the governing equations have discontinuous coefficients.

Tue, 17 May 2016

12:45 - 13:30
C5

Sorting of micro-swimmers in flowing visco-elastic fluids

Arnold Mathijssen
(University of Oxford)
Abstract

Interactions between micro-swimmers and their complex flow environments are important in many biological systems, such as sperm cells swimming in cervical mucus or bacteria in biofilm initiation areas. We present a theoretical model describing the dynamics of micro-organisms swimming in a plane Poiseuille flow of a viscoelastic fluid, accounting for hydrodynamic interactions and biological noise. General non-Newtonian effects are investigated, including shear-thinning and normal stress differences that lead to migration of the organisms across the streamlines of the background flow. We show that micro-swimmers are driven towards the centre-line of the channel, even if countered by hydrodynamic interactions with the channel walls that typically lead to boundary accumulation. Furthermore, we demonstrate that the normal stress differences reorient the swimmers at the centre-line in the direction against the flow so that they swim upstream. This suggests a natural sorting mechanism to select swimmers with a given swimming speed larger than the tunable Poiseuille flow velocity. This framework is then extended to study trapping and colony formation of pathogens near surfaces, in corners and crevices. 

Tue, 03 May 2016

13:00 - 13:30
C5

√T, or not √T, that is the question

Matthew Saxton
(Mathematical Institute, University of Oxford)
Abstract

We consider the motion of a thin liquid drop on a smooth substrate as the drop evaporates into an inert gas. Many experiments suggest that, at times close to the drop’s extinction, the drop radius scales as the square root of the time remaining until extinction. However, other experiments observe slightly different scaling laws. We use the method of matched asymptotic expansions to investigate whether this different behaviour is systematic or an artefact of experiment.

Tue, 21 Oct 2014

12:45 - 13:45
C4

TBA

Alexander Vervuurt, Jochen Kursawe, Linus Schumacher
(Mathematical Institute, Oxford)
Tue, 17 Jun 2014

13:15 - 14:00
C4

Community structure in temporal multilayer networks

Marya Bazzi
(University of Oxford)
Abstract

Networks provide a convenient way to represent complex systems of interacting entities. Many networks contain "communities" of nodes that are more strongly connected to each other than to nodes in the rest of the network. Most methods for detecting communities are designed for static networks. However, in many applications, entities and/or interactions between entities evolve in time. To incorporate temporal variation into the detection of a network's community structure, two main approaches have been adopted. The first approach entails aggregating different snapshots of a network over time to form a static network and then using static techniques on the resulting network. The second approach entails using static techniques on a sequence of snapshots or aggregations over time, and then tracking the temporal evolution of communities across the sequence in some ad hoc manner. We represent a temporal network as a multilayer network (a sequence of coupled snapshots), and discuss  a method that can find communities that extend across time. 

Tue, 03 Jun 2014

13:00 - 14:00
C4

`When you say "Jump!"; I say "How far ?"': non-local jumping for stochastic lattice-based position jump simulations.

Paul Taylor and Mark Gilbert
(University of Oxford)
Abstract
Position jump models of diffusion are a valuable tool in biology, but stochastic simulations can be very computationally intensive, especially when the number of particles involved grows large. It will be seen that time-savings can be made by allowing particles to jump with a range of distances and rates, rather than being restricted to moving to adjacent boxes on the lattice. Since diffusive systems can often be described with a PDE in the diffusive limit when particle numbers are large, we also discuss the derivation of equivalent boundary conditions for the discrete, non-local system, as well as variations on the basic scheme such as biased jumping and hybrid systems.
Tue, 13 May 2014 13:00 -
Wed, 14 May 2014 14:00
C4

Making Exact Bayesian Inference on Cox Processes

Yves-Lauren Kom Samo
(University of Oxford)
Abstract

Cox processes arise as a natural extension of inhomogeneous Poisson Processes, when the intensity function itself is taken to be stochastic. In multiple applications one is often concerned with characterizing the posterior distribution over the intensity process (given some observed data). Markov Chain Monte Carlo methods have historically been successful at such tasks. However, direct methods are doubly intractable, especially when the intensity process takes values in a space of continuous functions.

In this talk I'll be presenting a method to overcome this intractability that is based on the idea of "thinning" and that does not resort to approximations.

Tue, 11 Mar 2014

13:15 - 14:00
C4

Understanding the Dynamics of Embryonic Stem Cell Differentiation: A Combined Experimental and Modeling Approach

Stanley Strawbridge
(University of Cambridge)
Abstract

Pluripotency is a key feature of embryonic stem cells (ESCs), and is defined as the ability to give rise to all cell lineages in the adult body. Currently, there is a good understanding of the signals required to maintain ESCs in the pluripotent state and the transcription factors that comprise their gene regulatory network. However, little is known about how ESCs exit the pluripotent state and begin the process of differentiation. We aim to understand the molecular events associated with this process via an experiment-model cycle.

Tue, 25 Feb 2014

13:15 - 14:00
C4

Onset of menisci

Doireann O'Kiely
(OCIAM)
Abstract

A solid object placed at a liquid-gas interface causes the formation of a meniscus around it. In the case of a vertical circular cylinder, the final state of the static meniscus is well understood, from both experimental and theoretical viewpoints. Experimental investigations suggest the presence of two different power laws in the growth of the meniscus. In this talk I will introduce a theoretical model for the dynamics and show that the early-time growth of the meniscus is self-similar, in agreement with one of the experimental predictions. I will also discuss the use of a numerical solution to investigate the validity of the second power law.

Tue, 18 Feb 2014

13:15 - 14:00
C2

A non-parametric test for dependence based on the entropy rate

Pedro Vitoria (Stochastic Analysis group) and Galen Sher (Economics)
(Oxford University)
Abstract

A non-parametric test for dependence between sets of random variables based on the entropy rate is proposed. The test has correct size, unit asymptotic power, and can be applied to test setwise cross sectional and serial dependence. Using Monte Carlo experiments, we show that the test has favourable small-sample properties when compared to other tests for dependence. The ‘trick’ of the test relies on using universal codes to estimate the entropy rate of the stochastic process generating the data, and simulating the null distribution of the estimator through subsampling. This approach avoids having to estimate joint densities and therefore allows for large classes of dependence relationships to be tested. Potential economic applications include model specification, variable and lag selection, data mining, goodness-of-fit testing and measuring predictability.