Forthcoming events in this series


Mon, 27 Oct 2025
16:00
C3

On the distribution of very short character sums

Paweł Nosal
(University of Warwick)
Abstract
In their paper concerning quadratic residues Davenport and Erdős show that normalized sums of Legendre symbols $(\tfrac{n}{p})$ of suitable length $H(p) = p^{o(1)}$, with uniformly random starting point $X \in [0,...,p-1]$ obey the Central Limit Theorem, as the size of prime conductor goes to infinity.  
 
Recently, Basak, Nath and Zaharescu proved that the CLT still holds, if we pick $X$ uniformly at random from $[0,...,(\log p)^A], A>1$ , set $H(p) = (\log p)^{o(1)}$ and take the limit along full density subset of primes.  
 
In this talk, I will present a modification of their approach, inspired by the work of Harper on short character sums over moving intervals. This allows us to obtain the CLT of this type with $X$ uniformly random from $[0,...,g(p)]$ with practically arbitrary $g(p) \ll p^{\epsilon}$ for all $\epsilon >0$.
Mon, 20 Oct 2025
16:00
C3

An application of Goursat’s Lemma to the irreducibility of Galois representations

Zachary Feng
(University of Oxford)
Abstract
Goursat’s Lemma is an elementary, but perhaps niche, result in group theory classifying subdirect products of the product of two groups. In this talk, I will review what this lemma says, and describe how it can be used to deduce the irreducibility of Galois representations.

 
Mon, 13 Oct 2025
16:00
C3

Eigenvalues of non-backtracking matrices

Cedric Pilatte
(Mathematical Insitute, Oxford)
Abstract
Understanding the eigenvalues of the adjacency matrix of a (possibly weighted) graph is a problem arising in various fields of mathematics. Since a direct computation of the spectrum is often too difficult, a common strategy is to instead study the trace of a high power of the matrix, which corresponds to a high moment of the eigenvalues. The utility of this method comes from its combinatorial interpretation: the trace counts the weighted, closed walks of a given length within the graph.
 
However, a common obstacle arises when these walk-counts are dominated by trivial "backtracking" walks—walks that travel along an edge and immediately return. Such paths can mask the more meaningful structural properties of the graph, yielding only trivial bounds.
 
This talk will introduce a powerful tool for resolving this issue: the non-backtracking matrix. We will explore the fundamental relationship between its spectrum and that of the original matrix. This technique has been successfully applied in computer science and random graph theory, and it is a key ingredient in upcoming work on the 2-point logarithmic Chowla conjecture.
Mon, 16 Jun 2025
16:00
C3

Counting solutions to (some) homogeneous quadratic forms in eight prime variables

Aleksandra Kowalska
(University of Oxford)
Abstract
In 2014, Lilu Zhao counted the solutions to non-degenerate, homogeneous quadratic forms in at least nine prime variables, using the circle method. However, while the suggested formula for the number of solutions is believed to hold for forms in at least five variables, his method seems to break for general forms in less than nine variables.
In 2021, Ben Green solved the problem for forms in eight prime variables (using a very different approach), satisfying a 'genericity' condition. The aim of my project was to solve some forms in eight variables not satisfying this condition.
In the talk, I will describe my findings, which allowed me to count the number of solutions to forms in eight prime variables with off-diagonal rank 3 (i.e., which have an invertible 3x3 submatrix without diagonal entries), which is a subset of non-generic forms.
Mon, 09 Jun 2025
16:00
L6

TBC

Alexandra Kowalska
(University of Oxford)
Abstract

TBC

Fri, 06 Jun 2025
16:00
C3

Sharp mixed moment bounds for zeta times a Dirichlet L-function

Markus Valås Hagen
(NTNU)
Abstract

A famous theorem of Selberg asserts that $\log|\zeta(\tfrac12+it)|$ is approximately a normal distribution with mean $0$ and variance $\tfrac12\log\log T$, when we sample $t\in [T,2T]$ uniformly. This extends in a natural way to a plethora of other $L$-functions, one of them being Dirichlet $L$-functions $L(s,\chi)$ with $\chi$ a primitive Dirichlet character. Viewing $\zeta(\tfrac12+it)$ and $L(\tfrac12+it,\chi)$ as normal variables, we expect indepedence between them, meaning that for fixed $V_1,V_2 \in \mathbb{R}$: $$\textrm{meas}_{t \in [T,2T]} \left\{\frac{\log|\zeta(\tfrac12+it)|}{\sqrt{\tfrac12 \log\log T}}\geq V_1 \text{   and   } \frac{\log|L(\tfrac12+it,\chi)|}{\sqrt{\tfrac12 \log\log T}}\geq V_2\right\} \sim \prod_{j=1}^2 \int_{V_j}^\infty e^{-x^2/2} \frac{\textrm{d}x}{\sqrt{2\pi}}.$$
    When $V_j\asymp \sqrt{\log\log T}$, i.e. we are considering values of order of the variance, the asymptotic above breaks down, but the Gaussian behaviour is still believed to hold to order. For such $V_j$ the behaviour of the joint distribution is decided by the moments $$I_{k,\ell}(T)=\int_T^{2T} |\zeta(\tfrac12+it)|^{2k}|L(\tfrac12+it,\chi)|^{2\ell}\, dt.$$ We establish that $I_{k,\ell}(T)\asymp T(\log T)^{k^2+\ell^2}$ for $0<k,\ell \leq 1$. The lower bound holds for all $k,\ell >0$. This allows us to decide the order of the joint distribution when $V_j =\alpha_j\sqrt{\log\log T}$ for $\alpha_j \in (0,\sqrt{2}]$. Other corollaries include sharp moment bounds for Dedekind zeta functions of quadratic number fields, and Hurwitz zeta functions with rational parameter. 
    

Mon, 02 Jun 2025
16:00
L6

On the largest $k$-product-free subsets of the Alternating Groups

Anubhab Ghosal
(University of Oxford)
Abstract

A subset $A$ of $A_n$ is $k$-product-free if for all $a_1,a_2,\dots,a_k\in A$, $a_1a_2\dots a_k$ $\notin A$.
We determine the largest $3$-product-free and $4$-product-free subsets of $A_n$ for sufficiently large $n$. We also obtain strong stability results and results on multiple sets with forbidden cross products. The principal technical ingredient in our approach is the theory of hypercontractivity in $S_n$. Joint work with Peter Keevash.

Mon, 26 May 2025
16:00
L6

Large values of Dirichlet polynomials with characters

Vishal Gupta
(University of Oxford)
Abstract

Dirichlet polynomials are useful in the study of the Riemann zeta function & Dirichlet L functions, serving as approximations to them via the approximate functional equation. Understanding how often they can be large gives bounds on the number of zeroes of these functions in vertical strips - known as zero density estimates - which are relevant to the distribution of primes in short intervals. Based on Guth-Maynard, we study large values of Dirichlet polynomials with characters, relevant to Dirichlet L functions. Joint work with Yung Chi Li. 

Mon, 19 May 2025
16:00
L6

On derived deformations of Galois representations (after Galatius-Venkatesh)

Samuel Moore
(University of Oxford)
Abstract


Given a mod $p$ Galois representation, one often wonders whether it arises by reducing a $p$-adic one, and whether these lifts are suitably 'well-behaved'. In this talk, we discuss how ideas from homotopy theory aid the study of Galois deformations, reviewing work of Galatius-Venkatesh.

Mon, 12 May 2025
16:00
L6

The moduli space of Bohr sets in R^n

Yaël Dillies
(Stockholm University)
Abstract

The arithmetic regularity lemma says that any dense set A in F_p^n can be cut along cosets of some small codimension subspace H <= F_p^n such that on almost all cosets of H, A is either random or structured (in a precise quantitative manner). A standard example shows that one cannot hope to improve "almost all" to "all", nor to have a good quantitative dependency between the constants involved. Adding a further combinatorial assumption on A to the arithmetic regularity lemma makes its conclusion so strong that one can essentially classify such sets A. In this talk, I will use use the analogous problem with F_p^n replaced with R^n as a way the motivate the funny title.

Mon, 05 May 2025
16:00
L6

Modular arithmetic in the lambda-calculus

Maximilien Mackie
(University of Oxford)
Abstract

The lambda-calculus was invented to formalise arithmetic by encoding numbers and operations as abstract functions. We will introduce the lambda-calculus and present two encodings of modular arithmetic: the first is a recipe to quotient your favourite numeral system, and the second is purpose-built for modular arithmetic. A highlight of the second approach is that it does not require recursion i.e., it is defined without fixed-point operators. If time allows, we will also give an implementation of the Chinese remainder theorem which improves computational efficiency. 

Mon, 10 Mar 2025
16:00
C4

Sums of integers divisible by the sum of their digits

Kate Thomas
(University of Oxford)
Abstract

A base-g Niven number is an integer divisible by the sum of its digits in base-g. We show that any sufficiently large integer can be written as the sum of three base-3 Niven numbers, and comment on the extension to other bases. This is an application of the circle method, which we use to count the number of ways an integer can be written as the sum of three integers with fixed, near-average, digit sum. 

Mon, 03 Mar 2025
16:00
C6

From the classical to the $\mathrm{GL}_m$ large sieve

Alexandru Pascadi
(University of Oxford)
Abstract

The large sieve inequality for Dirichlet characters is a central result in analytic number theory, which encodes a strong orthogonality property between primitive characters of varying conductors. This can be viewed as a statement about $\mathrm{GL}_1$ automorphic representations, and it is a key open problem to prove similar results in the higher $\mathrm{GL}_m$ setting; for $m \ge 2$, our best bounds are far from optimal. We'll outline two approaches to such results (sketching them first in the elementary case of Dirichlet characters), and discuss work-in-progress of Thorner and the author on an improved $\mathrm{GL}_m$ large sieve. No prior knowledge of automorphic representations will be assumed.

Mon, 24 Feb 2025
16:00
C4

Modularity of certain trianguline Galois representations

James Kiln
(Queen Mary University of London)
Abstract

A generalisation of Wiles’ famous modularity theorem, the Fontaine-Mazur conjecture, predicts that two dimensional representations of the absolute Galois group of the rationals, with a few specific properties, exactly correspond to those representations coming from classical modular forms. Under some mild hypotheses, this is now a theorem of Kisin. In this talk, I will explain how one can p-adically interpolate the objects on both sides of this correspondence to construct an eigensurface and “trianguline” Galois deformation space, as well as outline a new approach to proving a theorem of Emerton, that these spaces are often isomorphic.

Mon, 17 Feb 2025
16:00
C6

TBC

Jori Merikowski
(University of Oxford)
Abstract

TBC

Mon, 17 Feb 2025
16:00
C6

Hoheisel's theorem on primes in short intervals via combinatorics

Jori Merikoski
(Oxford)
Abstract

Hoheisel's theorem states that there is some $\delta> 0$ and some $x_0>0$ such that for all $x > x_0$ the interval $[x,x+x^{1-\delta}]$ contains prime numbers. Classically this is proved using the Riemann zeta function and results about its zeros such as the zero-free region and zero density estimates. In this talk I will describe a new elementary proof of Hoheisel's theorem. This is joint work with Kaisa Matomäki (Turku) and Joni Teräväinen (Cambridge). Instead of the zeta function, our approach is based on sieve methods and ideas coming from additive combinatorics, in particular, the transference principle. The method also gives an L-function free proof of Linnik's theorem on the least prime in arithmetic progressions.

Mon, 10 Feb 2025
16:00
C4

A new axiom for $\mathbb{Q}_p^{ab}$ and non-standard methods for perfectoid fields

Leo Gitin
(University of Oxford)
Abstract

The class of henselian valued fields with non-discrete value group is not well-understood. In 2018, Koenigsmann conjectured that a list of seven natural axioms describes a complete axiomatisation of $\mathbb{Q}_p^{ab}$, the maximal extension of the $p$-adic numbers $\mathbb{Q}_p$ with abelian Galois group, which is an example of such a valued field. Informed by the recent work of Jahnke-Kartas on the model theory of perfectoid fields, we formulate an eighth axiom (the discriminant property) that is not a consequence of the other seven. Revisiting work by Koenigsmann (the Galois characterisation of $\mathbb{Q}_p$) and Jahnke-Kartas, we give a uniform treatment of their underlying method. In particular, we highlight how this method yields short, non-standard model-theoretic proofs of known results (e.g. finite extensions of perfectoid fields are perfectoid).

Mon, 03 Feb 2025
16:00
C6

Progress towards the Keating-Snaith conjecture for quadratic twists of elliptic curves

Nathan Creighton
(University of Oxford)
Abstract

The Keating-Snaith conjecture for quadratic twists of elliptic curves predicts the central values should have a log-normal distribution. I present recent progress towards establishing this in the range of large deviations of order of the variance. This extends Selberg’s Central Limit Theorem from ranges of order of the standard deviation to ranges of order of the variance in a variety of contexts, inspired by random walk theory. It is inspired by recent work on large deviations of the zeta function and central values of L-functions.
 

Mon, 27 Jan 2025
16:00
C4

Applied analytic number theory

Cédric Pilatte
(University of Oxford)
Abstract

The security of many widely used communication systems hinges on the presumed difficulty of factoring integers or computing discrete logarithms. However, Shor's celebrated algorithm from 1994 demonstrated that quantum computers can perform these tasks in polynomial time. In 2023, Regev proposed an even faster quantum algorithm for factoring integers. Unfortunately, the correctness of his new method is conditional on an ad hoc number-theoretic conjecture. Using tools from analytic number theory, we establish a result in the direction of Regev's conjecture. This enables us to design a provably correct quantum algorithm for factoring and solving the discrete logarithm problem, whose efficiency is comparable to Regev's approach. In this talk, we will give an accessible account of these developments.

Mon, 02 Dec 2024
16:00
C3

TBC

Leo Gitin
(University of Oxford)
Abstract

TBC

Mon, 25 Nov 2024
16:00
C3

Gap distributions and the Metric Poissonian Property 

Sophie Maclean
(King's College London)
Abstract
When studying dilated arithmetic sequences, it is natural to wonder about their distribution. Whilst it is relatively achievable to ascertain whether the resulting sequence is equidistributed, is it much more difficult to say much about gap size between consecutive elements of the new set? In this talk I will explore the gap distributions in dilated arithmetic sequences modulo 1, including what it means for a sequence to have the metric poissonian property. I will also give an overview of the current progress and what I am aiming to discover in my own work.
 
 
Mon, 18 Nov 2024
16:00
C3

Heegner points and Euler systems

Andrew Graham
(University of Oxford)
Abstract

Heegner points are a powerful tool for understanding the structure of the group of rational points on elliptic curves. In this talk, I will describe these points and the ideas surrounding their generalisation to other situations.

Mon, 04 Nov 2024
16:00
C3

Approximating Primes

Lasse Grimmelt
(University of Oxford)
Abstract

A successful strategy to handle problems involving primes is to approximate them by a more 'simple' function. Two aspects need to be balanced. On the one hand, the approximant should be simple enough so that the considered problem can be solved for it. On the other hand, it needs to be close enough to the primes in order to make it an admissible to replacement. In this talk I will present how one can construct general approximants in the context of the Circle Method and will use this to give a different perspective on Goldbach type applications.

Mon, 28 Oct 2024
16:00
C3

An introduction to modularity lifting

Dmitri Whitmore
(University of Cambridge)
Abstract
The (global) Langlands programme is a vast generalization of classical reciprocity laws. Roughly, it predicts a correspondence between:
1) modular forms (and their generalizations, automorphic forms)
2) representations of the Galois group of a number field.
While many constructions of Galois representations from automorphic forms exist, the converse direction is often harder to establish. The main tools to do so are modularity lifting theorems and are proved via the Taylor-Wiles method, originating from Wiles' proof of Fermat's Last Theorem.
 
I will introduce these ideas and their applications, focusing particularly on the problem of modularity of elliptic curves. I will then briefly discuss a generalization of the Taylor-Wiles method developed in my thesis which led to new modularity theorems in the setting of quadratic extensions of totally real fields by building of work of Boxer-Calegari-Gee-Pilloni.
Mon, 21 Oct 2024
16:00
C3

Monochromatic non-commuting products

Matt Bowen
(University of Oxford)
Abstract

We show that any finite coloring of an amenable group contains 'many' monochromatic sets of the form $\{x,y,xy,yx\},$ and natural extensions with more variables.  This gives the first combinatorial proof and extensions of Bergelson and McCutcheon's non-commutative Schur theorem.  Our main new tool is the introduction of what we call `quasirandom colorings,' a condition that is automatically satisfied by colorings of quasirandom groups, and a reduction to this case.

Mon, 14 Oct 2024
16:00
C3

Self-Similar Sets and Self-Similar Measures

Constantin Kogler
(University of Oxford)
Abstract

We give a gentle introduction to the theory of self-similar sets and self-similar measures. Connections of this topic to Diophantine approximation on Lie groups as well as to additive combinatorics will be exposed. In particular, we will discuss recent progress on Bernoulli convolutions. If time permits, we mention recent joint work with Samuel Kittle on absolutely continuous self-similar measures. 
 

Mon, 10 Jun 2024
16:00
L2

Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation

Manuel Hauke
(University of York)
Abstract

Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.

Mon, 03 Jun 2024
16:00
L2

Upper bounds on large deviations of Dirichlet L-functions in the Q-aspect

Nathan Creighton
(University of Oxford)
Abstract

Congruent numbers are natural numbers which are the area of right angled triangles with all rational sides. This talk will investigate conjectures for the density of congruent numbers up to some value $X$. One can phrase the question of whether a natural number is congruent in terms of whether an elliptic curve has non−zero rank. A theorem of Coates and Wiles connects this to whether the $L$-function associated to this elliptic curve vanishes at $1$. We will mention the conjecture of Keating on the asymptotic density based on random matrix considerations, and prove Tunnell’s Theorem, which connects the question of whether a natural number is a congruent number to counting integral points on varieties. Finally, I will hint at some future work I hope to do on non-vanishing of the $L$-functions.

Mon, 27 May 2024
16:00
L2

Special values of L-functions

Aleksander Horawa
(University of Oxford)
Abstract

In 1735, Euler observed that $ζ(2) = 1 + \frac{1}{2²} + \frac{1}{3²} + ⋯ = \frac{π²}{6}$. This is related to the famous identity $ζ(−1) "=" 1 + 2 + 3 + ⋯ "=" \frac{−1}{12}$. In general, values of the Riemann zeta function at positive even integers are equal to rational numbers multiplied by a power of $π$. The values at positive odd integers are much more mysterious; for example, Apéry proved that $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ⋯$ is irrational, but we still don't know if $ζ(5) = 1 + \frac{1}{2⁵} + \frac{1}{3⁵} + ⋯$ is rational or not! In this talk, we will explain the arithmetic significance of these values, their generalizations to Dirichlet/Dedekind L−functions, and to L−functions of elliptic curves. We will also present a new formula for $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ...$ in terms of higher algebraic cycles which came out of an ongoing project with Lambert A'Campo.

Mon, 20 May 2024
16:00
L2

Inhomogeneous multiplicative diophantine approximation

Kate Thomas
(University of Oxford)
Abstract

Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.

Mon, 13 May 2024
16:00
L2

Eigenvarieties and p-adic propagation of automorphy

Zachary Feng
(University of Oxford)
Abstract

Functoriality is a key feature in Langlands’ conjectured relationship between automorphic representations and Galois representations; it predicts that certain Galois representations are automorphic, i.e. should come from automorphic representations. We discuss the idea of $p$-adic propagation of automorphy, which seeks to establish the automorphy of everything in a “neighborhood” given the automorphy of something in that neighborhood. The “neighborhoods” that we consider will be the irreducible components of a $p$-adic analytic space called the eigenvariety, which parameterizes $p$-adic automorphic representations. This technique was introduced by Newton and Thorne in their proof of symmetric power functoriality, and can be adapted to investigate similar problems.

Mon, 06 May 2024
16:00
L2

On twisted modular curves

Franciszek Knyszewski
(University of Oxford)
Abstract

Modular curves are moduli spaces of elliptic curves equipped with certain level structures. This talk will be concerned with how the attendant theory has been used to answer questions about the modularity of elliptic curves over $\mathbb{Q}$ and over quadratic fields. In particular, we will outline two instances of the modularity switching technique over totally real fields: the 3-5 trick of Wiles and the 3-7 trick of Freitas, Le Hung and Siksek. The recent work of Caraiani and Newton over imaginary quadratic fields naturally leads one to consider the descent theory of 'twisted' modular curves, and this will be the focus of the final part of the talk.

Mon, 29 Apr 2024
16:00
L2

New Lower Bounds For Cap Sets

Fred Tyrrell
(University of Bristol)
Abstract

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.

Mon, 22 Apr 2024
16:00
L2

On Unique Sums in Abelian Groups

Benjamin Bedert
(University of Oxford)
Abstract

In this talk, we will study the problem in additive combinatorics of determining for a finite Abelian group $G$ the size of its smallest subset $A\subset G$ that has no unique sum, meaning that for every two $a_1,a_2\in A$ we can write $a_1+a_2=a’_1+a’_2$ for different $a’_1,a’_2\in A$. We begin by using classical rectification methods to obtain the previous best lower bounds of the form $|A|\gg \log p(G)$, which stood for 50 years. Our main aim is to outline the proof of a recent improvement and discuss some of its key notions such as additive dimension and the density increment method. This talk is based on Bedert, B. On Unique Sums in Abelian Groups. Combinatorica (2023).

Mon, 04 Mar 2024
16:00
L2

The dispersion method and beyond: from primes to exceptional Maass forms

Alexandru Pascadi
(University of Oxford)
Abstract
The dispersion method has found an impressive number of applications in analytic number theory, from bounded gaps between primes to the greatest prime factors of quadratic polynomials. The method requires bounding certain exponential sums, using deep inputs from algebraic geometry, the spectral theory of GL2 automorphic forms, and GLn automorphic L-functions. We'll give a broad outline of this process, which combines various types of number theory; time permitting, we'll also discuss the key ideas behind some new results.
 
Mon, 26 Feb 2024
16:00
L2

The Metaplectic Representation is Faithful

Christopher Chang, Simeon Hellsten, Mario Marcos Losada, and Sergiu Novac.
(University of Oxford)
Abstract

Iwasawa algebras are completed group rings that arise in number theory, so there is interest in understanding their prime ideals. For some special Iwasawa algebras, it is conjectured that every non-zero such ideal has finite codimension and in order to show this it is enough to establish the faithfulness of the modules arising from the completion of highest weight modules. In this talk we will look at methods for doing this and apply them to the specific case of the metaplectic representation for the symplectic group.

Mon, 19 Feb 2024
16:00
L2

On entropy of arithmetic functions

Fei Wei
(University of Oxford)
Abstract

In this seminar, I will talk about a notion of entropy of arithmetic functions and some properties of this entropy.  This notion was introduced to study Sarnak's Moebius Disjointness Conjecture.

Mon, 12 Feb 2024
16:00
L2

Higher descent on elliptic curves

Sven Cats
(University of Cambridge)
Abstract

Let $E$ be an elliptic curve over a number field $K$ and $n \geq 2$ an integer. We recall that elements of the $n$-Selmer group of $E/K$ can be explicitly written in terms of certain equations for $n$-coverings of $E/K$. Writing the elements in this way is called conducting an explicit $n$-descent. One of the applications of explicit $n$-descent is in finding generators of large height for $E(K)$ and from this point of view one would like to be able to take $n$ as large as possible. General algorithms for explicit $n$-descent exist but become computationally challenging already for $n \geq 5$. In this talk we discuss combining $n$- and $(n+1)$-descents to $n(n+1)$-descent and the role that invariant theory plays in this procedure.

Mon, 05 Feb 2024
16:00
L2

TBC

TBC
(TBC)
Abstract

TBC

Mon, 29 Jan 2024
16:00
L2

Quantitative bounds for a weighted version of Chowla's conjecture

Cédric Pilatte
(University of Oxford)
Abstract

The Liouville function $\lambda(n)$ is defined to be $+1$ if $n$ is a product of an even number of primes, and $-1$ otherwise. The statistical behaviour of $\lambda$ is intimately connected to the distribution of prime numbers. In many aspects, the Liouville function is expected to behave like a random sequence of $+1$'s and $-1$'s. For example, the two-point Chowla conjecture predicts that the average of $\lambda(n)\lambda(n+1)$ over $n < x$ tends to zero as $x$ goes to infinity. In this talk, I will discuss quantitative bounds for a logarithmic version of this problem.

Mon, 22 Jan 2024
16:00
L2

Computing Tangent Spaces to Eigenvarieties

James Rawson
(University of Warwick)
Abstract

Many congruences between modular forms (or at least their q-expansions) can be explained by the theory of $p$-adic families of modular forms. In this talk, I will discuss properties of eigenvarieties, a geometric interpretation of the idea of $p$-adic families. In particular, focusing initially on the well-understood case of (elliptic) modular forms, before delving into the considerably murkier world of Bianchi modular forms. In this second case, this work gives numerical verification of a couple of conjectures, including BSD by work of Loeffler and Zerbes.

Mon, 15 Jan 2024
16:00
L2

A friendly introduction to Shimura curves

Håvard Damm-Johnsen
(University of Oxford)
Abstract

Modular curves play a key role in the Langlands programme, being the simplest example of so-called Shimura varieties.  Their less famous cousins, Shimura curves, are also very interesting, and very concrete. 
In this talk I will give a gentle introduction to the arithmetic of Shimura curves, with lots of explicit examples. Time permitting, I will say something about recent work about intersection numbers of geodesics on Shimura curves.

Mon, 27 Nov 2023
16:00
C1

On two variations of Mazur's deformation functor

Simon Alonso
(ENS de Lyon)
Abstract

In 1989, Mazur defined the deformation functor associated to a residual Galois representation, which played an important role in the proof by Wiles of the modularity theorem. This was used as a basis over which many mathematicians constructed variations both to further specify it or to expand the contexts where it can be applied. These variations proved to be powerful tools to obtain many strong theorems, in particular of modular nature. In this talk I will give an overview of the deformation theory of Galois representations and describe two variants of Mazur's functor that allow one to properly deform reducible residual representations (which is one of the shortcomings of Mazur's original functor). Namely, I will present the theory of determinant-laws initiated by Bellaïche-Chenevier on the one hand, and an idea developed by Calegari-Emerton on the other.
If time permits, I will also describe results that seem to indicate a possible comparison between the two seemingly unrelated constructions.

Mon, 20 Nov 2023
16:00
L1

Post-Quantum Cryptography (and why I’m in the NT corridor)

Patrick Hough
(University of Oxford)
Abstract

In this talk I will give a brief introduction to the field of post-quantum (PQ) cryptography, introducing a few of the most popular computational hardness assumptions. Second, I will give an overview of a recent work of mine on PQ electronic voting. I’ll finish by presenting a short selection of ‘exotic’ cryptographic constructions that I think are particularly hot at the moment (no, not blockchain). The talk will be definitionally light since I expect the area will be quite new to many and I hope this will make for a more engaging introduction.

Mon, 13 Nov 2023
16:00
C3

Modular generating series

Mads Christensen
(University College London)
Abstract

For many spaces of interest to number theorists one can construct cycles which in some ways behave like the coefficients of modular forms. The aim of this talk is to give an introduction to this idea by focusing on examples coming from modular curves and Heegner points and the relevant work of Zagier, Gross-Kohnen-Zagier and Borcherds. If time permits I will discuss generalizations to other spaces.

Mon, 06 Nov 2023
16:00
L1

A Basic Problem in Analytic Number Theory

George Robinson
(University of Oxford)
Abstract

I will discuss a basic problem in analytic number theory which has appeared recently in my work. This will be a gentle introduction to the Gauss circle problem, hopefully with a discussion of some extensions and applications to understanding L-functions.

Mon, 30 Oct 2023
16:00
C2

Hodge theory in positive characteristic

Inés Borchers Arias
(University of Oxford)
Abstract

I will introduce the Hodge-de-Rham spectral sequence and formulate an algebraic Hodge decomposition theorem. Time permitting, I will sketch Deligne and Illusie’s proof of the Hodge decomposition using positive characteristic methods.

Mon, 16 Oct 2023
16:00
C3

Avoiding Problems

Francesco Ballini
(University of Oxford )
Abstract

In 2019 Masser and Zannier proved that "most" abelian varieties over the algebraic numbers are not isogenous to the jacobian of any curve (where "most" refers to an ordering by some suitable height function). We will see how this result fits in the general Zilber-Pink Conjecture picture and we discuss some (rather concrete) analogous problems in a power of the modular curve Y(1).

Mon, 09 Oct 2023
16:00
C3

Primes in arithmetic progressions to smooth moduli

Julia Stadlmann
(University of Oxford)
Abstract

The twin prime conjecture asserts that there are infinitely many primes p for which p+2 is also prime. This conjecture appears far out of reach of current mathematical techniques. However, in 2013 Zhang achieved a breakthrough, showing that there exists some positive integer h for which p and p+h are both prime infinitely often. Equidistribution estimates for primes in arithmetic progressions to smooth moduli were a key ingredient of his work. In this talk, I will sketch what role these estimates play in proofs of bounded gaps between primes. I will also show how a refinement of the q-van der Corput method can be used to improve on equidistribution estimates of the Polymath project for primes in APs to smooth moduli.