Forthcoming events in this series
Introduction to the Birch--Swinnerton-Dyer Conjecture. III: Average ranks, the Artin--Tate conjecture and function fields.
Abstract
In the previous talks we have seen the formulation of the Birch--Swinnerton-Dyer conjecture. This talk will focus on a fundamental question in diophantine geometry. Namely, given an algebraic curve \textit{C} defined over $\mathbb{Q}$ possessing at least one rational point, what is
the probability that \textit{C} has infinitely many rational points?
For curves of genus 0, the answer has been known ever since the ancient Greeks roamed the earth, and for genus > 1 the answer is also known (albeit for a much shorter time). The remaining case is genus 1, and this question has a history filled with tension and
conflict between data and conjecture.
I shall describe the heuristics behind the conjectures, taking into account the Birch--Swinnerton-Dyer Conjecture and the Parity Conjecture. I shall go on to outline the contrary numeric data, both in families of elliptic curves and for all elliptic curves of increasing conductor.
If one instead considers elliptic curves over function fields $\mathbb{F}_{q} (t)$, then, via a conjecture of Artin and Tate, one can compute the rank (and more) of elliptic curves of extremely large discriminant degree. I shall briefly describe the interplay between Artin--Tate and
Birch--Swinnerton-Dyer, and give new evidence finally supporting the conjecture.
An Introduction to the Birch--Swinnerton-Dyer Conjecture II
Abstract
This is the second (of two) talks concerning the Birch--Swinnerton-Dyer Conjecture.
An Introduction to the Birch--Swinnerton-Dyer Conjecture
Abstract
This is the first (of two) talks which will be given concerning the Birch--Swinnerton-Dyer Conjecture.
The Chevalley-Warning Theorem
Abstract
The goal of this talk is to give sufficient conditions for the existence of points on certain varieties defned over finite fields.
Classical Primality Testing
Abstract
This talk will mention methods of testing whether a given integer is prime. Included topics are Carmichael numbers, Fermat and Euler pseudo-primes and results contingent on the Generalised Riemann Hypothesis.
Ostrowski's Theorem and other diversions
Abstract
Aside from a few tangential problems, this seminar will include a proof of Ostrowski's Theorem. This states than any norm over the rationals is equivalent to either the Euclidean norm or the $p$-adic norm, for some prime $p$.
Dirichlet's Approximation Theorem
Abstract
This talk will introduce Dirichlet's Theorem on the approximation of real numbers via rational numbers. Once this has been established, a stronger version of the result will be proved, viz Hurwitz's Theorem.
Jensen's Theorem and a Simple Application
Abstract
This second 'problem sheet' of the term includes a proof of Jensen's Theorem for the number of zeroes of an analytic function in a disc, the usefulness of which is highlighted by an application to the Riemann zeta-function.
A Combinatorial Approach to Szemer\'{e}di's Theorem on Arithmetic Progressions
Abstract
On 3-term arithmetic progressions in large subsets of $$\mathbb{N}$$.
Resultants, Discriminants and the Principal A-Determinant
An Introduction to the $\textit{Lindel\"{o}f Hypothesis}$
Some mathematics in musical harmonics
Abstract
A brief overview of consonance by way of continued fractions and modular arithmetic.
A digression from the zeroes of the Riemann zeta function to the behaviour of $S(t)$
Abstract
Defined in terms of $\zeta(\frac{1}{2} +it)$ are the Riemann-Siegel functions, $\theta(t)$ and $Z(t)$. A zero of $\zeta(s)$ on the critical line corresponds to a sign change in $Z(t)$, since $Z$ is a real function. Points where $\theta(t) = n\pi$ are called Gram points, and the so called Gram's Law states between each Gram point there is a zero of $Z(t)$, and hence of $\zeta(\frac{1}{2} +it)$. This is known to be false in general and work will be presented to attempt to quantify how frequently this fails.
An excursus in computations in deforming curves in weighted projective spaces
Abstract
I will review the construction of algebraic de Rham cohomology, relative de Rham cohomology, and the Gauss-Manin connection. I will then show how we can find a basis for the cohomology and the matrix for the connection with respect to this basis for certain families of curves sitting in weighted projective spaces.