Lakes, rivers… and waterfalls? Modelling Antarctic Surface Hydrology
Abstract
The formation of surface meltwater has been linked with the disintegration of many ice shelves in the Antarctic Peninsula over the last several decades. Despite the importance of surface meltwater production and transport to ice shelf stability, knowledge of these processes is still lacking. Understanding the surface hydrology of ice shelves is an essential first step to reliably project future sea level rise from ice-sheet melt.
In order to better understand the processes driving meltwater distribution on ice shelves, we present the first comprehensive model of surface hydrology to be developed for Antarctic ice shelves, enabling us to incorporate key processes such as the lateral transport of surface meltwater. Recent observations suggest that surface hydrology processes on ice shelves are more complex than previously thought, and that processes such as lateral routing of meltwater across ice shelves, ice shelf flexure and surface debris all play a role in the location and influence of meltwater. Our model allows us to account for these and is calibrated and validated through both remote sensing and field observations.