Forthcoming events in this series


Fri, 09 Dec 2011

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Ian Griffiths - Control and optimization in filtration and tissue engineering
  • Vladimir Zubkov - Comparison of the Navier-Stokes and the lubrication models for the tear film dynamics
  • Victor Burlakov - Applying the ideas of 1-st order phase transformations to various nano-systems
Fri, 11 Nov 2011

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Derek Moulton - "Growth and morphology of seashells"
  • Simon Cotter - "A Hybrid stochastic finite element method for solving Fokker-Planck equations"
  • Apala Majumdar -"The theory of liquid crystals - analysis, computation and applications"
Fri, 14 Oct 2011

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Stephen Peppin
  • Chris Prior
  • Mark Flegg
Fri, 09 Sep 2011
11:15
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Rob Style - "Drying and freezing stuff - the wrap up"
  • Maria Bruna-Estrach - “Including excluded-volume effects into diffusion of hard spheres" 
  • Patricio Farrell - “Multiscale Analysis for Elliptic Boundary Value Problems using Radial Basis Functions"
Fri, 08 Jul 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Benjamin Franz - "Hybrid modelling of individual movement and collective behaviour"
  • Ingrid Von Glehn - "Image Inpainting on Surfaces"
  • Rita Schlackow - "Genome-wide analysis of transcription termination regions in fission yeast"
Fri, 10 Jun 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • James Kirkpatrick - "Drift Diffusion modelling of organic solar cells: including electronic disorder".
  • Timothy Reis - "Moment-based boundary conditions for the Lattice Boltzmann method".
  • Matthew Moore - "Introducing air cushioning to Wagner theory".
  • Matthew Hennessy - “Organic Solar Cells and the Marangoni Instability”.
Fri, 13 May 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Wan Chen - “From Brownian Dynamics to Transition Rate Theory: An Ion Channel Example”
  • Thomas Lessinnes - "Neuronal growth: a mechanical perspective"
  • Savina Joseph - “Current generation in solar cells”
  • Shengxin Zhu - “The Numerical Linear Algebra of Approximation involving Radial Basis Functions”
Fri, 08 Apr 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

POSTPONED UNTIL 13 MAY 2011
Abstract

Postponed until May

Fri, 11 Mar 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Thomas Maerz - ‘Some scalar conservation laws on some surfaces - Closest Point Method’
  • Chong Luo - ‘Numerical simulation of bistable switching in liquid crystals’
  • Radek Erban - ‘Half-way through my time at OCCAM: looking backwards, looking forwards’
  • Hugh McNamara - ‘Challenges in locally adaptive timestepping for reservoir simulation’
Fri, 11 Feb 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Laura Gallimore - Modelling Cell Motility
  • Y. M. Lai - Stochastic Synchronization of Neural Populations
  • Jay Newby - Quasi-steady State Analysis of Motor-driven Transport on a 2D Microtubular Network
Fri, 14 Jan 2011

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Chris Farmer - Numerical simulation of anisotropic diffusion
  • Jean-Charles Seguis - Introduction to the Fictitious Domain Method for Finite Elements Method
  • Amy Smith - Multiscale Models of Cardiac Contraction and Perfusion
  • Mark Curtis - Developing a novel Slender Body Theory incorporating regularised singularities
Fri, 10 Dec 2010

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Nick Hale - 'Rectangular pseudospectral differentiation matrices' or, 'Why it's not hip to be square'

Boundary conditions in pseudospectral collocation methods are imposed by removing rows of the discretised differential operator and replacing them with others to enforce the required conditions at the boundary. A new approach, based upon projecting the discrete operator onto a lower-degree subspace to create a rectangular matrix and applying the boundary condition rows to ‘square it up’, is described.
We show how this new projection-based method maintains characteristics and advantages of both traditional collocation and tau methods.

  • Cameron Hall - 'Discrete-to-continuum asymptotics of functions defined as sums'

When attempting to homogenise a large number of dislocations, it becomes important to express the stress in a body due to the combined effects of many dislocations. Assuming linear elasticity, this can be written as a simple sum over all the dislocations. In this talk, a method for obtaining an asymptotic approximation to this sum by simple manipulations will be presented. This method can be generalised to approximating one-dimensional functions defined as sums, and work is ongoing to achieve the same results in higher dimensions.

  • Vladimir Zubkov - 'On the tear film modeling'

A great number of works about the tear film behaviour was published. The majority of these works based on modelling with the use of the lubrication approximation. We explore the relevance of the lubrication tear film model compare to the 2D Navier-Stokes model. Our results show that the lubrication model qualitatively describe the tear film evolution everywhere except region close to an eyelid margin. We also present the tear film behaviour using Navier-Stokes model that demonstrates that here is no mixing near the MCJ when the eyelids move relative to the eyeball.

  • Kostas Zygalakis - 'Numerical methods for stiff stochastic differential equations'

Multiscale differential equations arise in the modelling of many important problems in the science and engineering. Numerical methods for such problems have been extensively studied in the deterministic case. In this talk, we will discuss numerical methods for (mean-square stable) stiff stochastic differential equations. In particular we will discuss a generalization of explicit stabilized methods, known as Chebyshev methods to stochastic problems.

Fri, 12 Nov 2010

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Ian Griffiths - "Taylor Dispersion in Colloidal Systems".
  • James Lottes - "Algebraic multigrid for nonsymmetric problems".
  • Derek Moulton - "Surface growth kinematics"
  • Rob Style - "Ice lens formation in freezing soils"
Fri, 08 Oct 2010

11:15 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Simon Cotter presents:       “Chemical Fokker-Planck equation and multiscale modelling of (bio)chemical systems”
  • Lian Duan presents:            “History matching problems using Bspline Parameterization”
  • Chris Prior presents:          “Helices, tubes and the Fourier Transform”
Fri, 09 Jul 2010

11:45 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
(OCCAM, University of Oxford)
Abstract

OCCAM Group Meeting 09.07.10

Thu, 08 Jul 2010

10:00 - 11:00
OCCAM Common Room (RI2.28)

Volcanic test of climate mechanisms

Professor Georgiy L. Stenchikov
(KAUST)
Abstract

Strong explosive volcanic eruptions could inject in the lower stratosphere million tons of SO2, which being converted to sulfate aerosols, affect radiative balance of the planet for a few years. During this period the volcanic radiative forcing dominates other forcings producing distinct detectable climate responses. Therefore volcanic impacts provide invaluable natural test of climate nonlinearities and feedback mechanisms. In this talk I will overview volcanic impacts on tropospheric and strsatospheric temperature, ozone, high-latitude circulation, stratosphere-troposphere dynamic interaction, and focus on the long-term volcanic effect on ocean heat content and sea level.

Tue, 24 Nov 2009

16:30 - 17:30
DH 1st floor SR

New numerical and asymptotic methods in applied PDEs

Vladimir Mazya
(The University of Liverpool)
Abstract

1. "Approximate approximations" and accurate computation of high dimensional potentials.

2. Iteration procedures for ill-posed boundary value problems with preservation of the differential equation.

3. Asymptotic treatment of singularities of solutions generated by edges and vertices at the boundary.

4. Compound asymptotic expansions for solutions to boundary value problems for domains with singularly perturbed boundaries.

5. Boundary value problems in perforated domains without homogenization.

Mon, 21 Sep 2009
16:30
DH 1st floor SR

A stochastic model of large-scale brain activity

Jack Cowan
(University of Chicago)
Abstract

We have recently found a way to describe large-scale neural

activity in terms of non-equilibrium statistical mechanics.

This allows us to calculate perturbatively the effects of

fluctuations and correlations on neural activity. Major results

of this formulation include a role for critical branching, and

the demonstration that there exist non-equilibrium phase

transitions in neocortical activity which are in the same

universality class as directed percolation. This result leads

to explanations for the origin of many of the scaling laws

found in LFP, EEG, fMRI, and in ISI distributions, and

provides a possible explanation for the origin of various brain

waves. It also leads to ways of calculating how correlations

can affect neocortical activity, and therefore provides a new

tool for investigating the connections between neural

dynamics, cognition and behavior