Forthcoming events in this series


Tue, 07 Jun 2022

12:00 - 13:15
L5

Hydrodynamic Approach to Integrable Quantum Field Theory

Dr Aleksandra Ziolkowska
(Oxford)
Abstract

Hydrodynamics allow for efficient computation of many-body dynamics and have been successfully used in the study of black hole horizons, collective behaviour of QCD matter in heavy ion collisions, and non-equilibrium behaviour in strongly-interacting condensed matter systems.
In this talk, I will present the application of hydrodynamics to quantum field theory with an infinite number of local conservation laws. Such an integrable system can be described within the recently developed framework of generalised hydrodynamics. I will present the key assumptions of generalised hydrodynamics as well as summarise some recent developments in this field. In particular, I will concentrate on the study of the SU(3)_2-Homogeneous sine-Gordon model. Thanks to the hydrodynamic approach, we were able to identify the key dynamical signatures of unstable excitations in this integrable quantum field theory and simulate the real time RG-flow of the theory between interacting and free conformal regimes.
The talk is based on joint work with Olalla Castro-Alvaredo, Cecilia De Fazio and Benjamin Doyon.

Fri, 03 Jun 2022

12:00 - 13:00
L5

Entanglement Measures in Quantum Field Theory: An Approach Based on Symmetry Fields

Dr Olalla Castro Alvaredo
(City University London)
Abstract

In this talk I will review some of the key ideas behind the study of entanglement measures in 1+1D quantum field theories employing the so-called branch point twist field approach. This method is based on the existence of a one-to-one correspondence between different entanglement measures and different multi-point functions of a particular type of symmetry field. It is then possible to employ standard methods for the evaluation of correlation functions to understand properties of entanglement in bipartite systems. Time permitting, I will then present a recent application of this approach to the study of a new entanglement measure: the symmetry resolved entanglement entropy.

Tue, 17 May 2022

12:00 - 13:15
L5

Peeling at an extreme black hole horizon

Prof Jean-Philippe Nicolas
(Brest)
Abstract

Black hole horizons are normally at finite spatial distance from the exterior region, but when they are degenerate (or extreme as they are usually referred to in this case) the spatial distance becomes infinite. One can still fall into the black hole in finite proper time but the crossing sphere is replaced by an "internal infinity". Near to the horizon of an extreme Kerr black hole, the scattering properties of test fields bear some similarities to what happens at an asymptotically flat infinity. This observation triggered a natural question concerning the peeling behaviour of test fields near such horizons. A geometrical tool known as the Couch-Torrence inversion is particularly well suited to studying this question. In this talk, I shall recall some essential notions on the peeling of fields at an asymptotically flat infinity and describe the Couch-Torrence inversion in the particular case of extreme Reissner-Nordström black holes, where it acts as a global conformal isometry of the spacetime. I will then show how to extend this inversion to more general spherically symmetric extreme horizons and describe what results can be obtained in terms of peeling. This is a joint ongoing project with Jack Borthwick (University of Besançon) and Eric Gourgoulhon (Paris Observatory).

Tue, 03 May 2022

12:00 - 13:00
L4

Burns holography

Atul Sharma
((Oxford University))
Abstract

Holography in asymptotically flat spaces is one of the most coveted goals of modern mathematical physics. In this talk, I will motivate a novel holographic description of self-dual SO(8) Yang-Mills + self-dual conformal gravity on a Euclidean signature, asymptotically flat background called Burns space. The holographic dual lives on a stack of D1-branes wrapping a CP^1 cycle in the twistor space of R^4 and is given by a gauged beta-gamma system with SO(8) flavor and a pair of defects at the north and south poles. It provides the first example of a stringy realization of (asymptotically) flat holography and is a Euclidean signature variant of celestial holography. This is based on ongoing work with Kevin Costello and Natalie Paquette.

Tue, 08 Mar 2022
12:00
L5

Classical physics and scattering amplitudes on curved backgrounds

Andrea Christofoli
(Edinburgh)
Abstract

A particle physics approach to describing black hole interactions is opening new avenues for understanding gravitational-wave observations. We will start by reviewing this paradigm change, showing how to compute observables in general relativity from amplitudes on flat spacetime. We will then present a generalization of this framework for amplitudes on curved backgrounds. Evaluating the required one-to-one amplitudes already shows remarkable structures. We will discuss them in detail, including eikonal behaviours and unexpected KLT-like factorization properties for amplitudes on stationary backgrounds. We will then conclude by discussing applications of these amplitudes to strong field observables such as the impulse on a curved background and memory effects

 

 

 

Wed, 23 Feb 2022
12:00
L6

Almost Robinson geometry

Arman Taghavi Chabert
(Warsaw)
Abstract

Non-shearing congruences of null geodesics on four-dimensional Lorentzian manifolds are fundamental objects of mathematical relativity. Their prominence in exact solutions to the Einstein field equations is supported by major results such as the Robinson, Goldberg-Sachs and Kerr theorems. Conceptually, they lie at the crossroad between Lorentzian conformal geometry and Cauchy-Riemann geometry, and are one of the original ingredients of twistor theory.
 
Identified as involutive totally null complex distributions of maximal rank, such congruences generalise to any even dimensions, under the name of Robinson structures. Nurowski and Trautman aptly described them as Lorentzian analogues of Hermitian structures. In this talk, I will give a survey of old and new results in the field.

Tue, 08 Feb 2022
12:00
L5

A Mathematical Study of Hawking Radiation for Reissner Nordstrom black holes

Fred Alford
(Imperial College)
Abstract

In the first part of this talk, we will (briefly) derive the original calculation by Hawking in 1974 to determine the radiation given off by a black hole, giving the result in the form of an integral of a classical solution to the linear wave equation.
In the second part of the talk, we will take this integral as a starting point, and rigorously calculate the radiation given off by a forming spherically symmetric, charged black hole. We will then show that for late times in its formation, the radiation given off approaches the limit predicted by Hawking, including the extremal case. We will also calculate a bound on the rate at which this limit is approached.

Tue, 02 Nov 2021
15:30
L5

Celestial holography, twisted holography, and twistors

Kevin Costello
(Perimeter Institute)
Abstract

I'll argue that the celestial holography program looks a lot like the twisted holography program when studied on twistor space.  The chiral algebras in celestial holography can be seen by applying techniques such as Koszul duality to holomorphic theories on twistor space. Along the way, I will discuss the role of one-loop gauge anomalies on twistor space and when they can be cancelled by a Green-Schwarz mechanism.   This is joint work in progress with Natalie Paquette.

The speaker will be on zoom, but for a more interactive experience, some of the audience will watch the seminar in L5.

 

Tue, 02 Nov 2021
12:00
L5

Worldsheet description of Kerr interactions

Alex Ochirov
(Oxford)
Abstract

The recent progress of applying QFT methods to classical GR has provided a new perspective on the Kerr black hole solution. Its leading gravitational interactions are known to involve an infinite tower of spin-induced multipoles with unit coupling constants. In this talk, I will present a novel form of the classical worldline action that implements these multipole interactions within a single worldsheet integral, which is inspired by the Newman-Janis shift relationship of the Kerr and Schwarzschild solutions. I will also discuss connections to our recently discovered ability to model such interactions using a certain family of scattering amplitudes, as well as a simple double-copy property hidden within. 

This will be an in-person seminar run in hybrid mode.

Tue, 19 Oct 2021
12:00
L5

Why Null Infinity Is Not Smooth, and How to Measure Its Non-smoothness

Leonhard Kehrberger
(Cambridge)
Abstract

Penrose's proposal of smooth conformal compactification is not only of geometric elegance, it also makes concrete predictions on physically measurable objects such as the "late-time tails" of gravitational waves.  At the same time, the physical motivation for a smooth null infinity remains itself unclear. In this talk, building on arguments due to Christodoulou, Damour and others, I will show that, in generic gravitational collapse, the "peeling property" of gravitational radiation is violated (so one cannot attach a smooth null infinity). Moreover, I will explain how this violation of peeling is in principle measurable in the form of leading-order deviations from the usual late-time tails of gravitational radiation.

This talk is based on https://arxiv.org/abs/2105.08079https://arxiv.org/abs/2105.08084 and https://arxiv.org/abs/2106.00035 .

It will be a hybrid seminar on both zoom and in-person in L5. 

Tue, 29 Jun 2021
14:00
Virtual

Asymptotics for the wave equation on black hole spacetimes

Stefanos Aretakis
(Toronto)
Abstract

We will present the precise late-time asymptotics for scalar fields on both extremal and sub-extremal black holes including the full Reissner-Nordstrom family and the subextremal Kerr family. Asymptotics for higher angular modes will be presented for all cases. Applications in observational signatures will also be discussed. This work is joint with Y. Angelopoulos (Caltech) and D. Gajic (Cambridge)

Tue, 01 Jun 2021
12:00
Virtual

The nonlinear stability of the Schwarzschild family of black holes

Martin Taylor
(Imperial College)
Abstract

I will present a theorem on the full finite codimension nonlinear asymptotic stability of the Schwarzschild family of black holes.  The proof employs a double null gauge, is expressed entirely in physical space, and utilises the analysis of Dafermos--Holzegel--Rodnianski on the linear stability of the Schwarzschild family.  This is joint work with M. Dafermos, G. Holzegel and I. Rodnianski.

Tue, 18 May 2021
12:00
Virtual

Twistor sigma models, Plebanski generating functions and graviton scattering

Lionel Mason
(Oxford)
Abstract

Plebanski generating functions give a compact encoding of the geometry of self-dual Ricci-flat space-times or hyper-Kahler spaces.  They have applications as generating functions for BPS/DT/Gromov-Witten invariants.  We first show that Plebanski's first fundamental form also provides a generating function for the gravitational MHV amplitude.  We then obtain these Plebanski generating functions from the corresponding twistor spaces as the value of the action of new sigma models for holomorphic curves in twistor space.   
In four-dimensions, perturbations of the hyperk¨ahler structure corresponding to positive helicity gravitons. The sigma model’s perturbation theory gives rise to a sum of tree diagrams for the gravity MHV amplitude observed previously in the literature, and their summation via a matrix tree theorem gives a first-principles derivation of Hodges’ determinant formula directly from general relativity. We generalise the twistor sigma model to higher-degree (defined in the first instance with a cosmological constant), giving a new generating principle for the full tree-level graviton S-matrix in general with or without  cosmological constant.  This is joint work with Tim Adamo and Atul Sharma in https://arxiv.org/abs/2103.16984.  

Tue, 04 May 2021
12:00

Non-singular extension of the Kerr-NUT- (anti) de Sitter spacetimes

Dr Jerzy Lewandowski
(University of Warsaw)
Abstract

The outstanding issue of a non-singular extension of the Kerr-NUT- (anti) de Sitter solutions to Einstein’s equations is solved completely. The Misner’s method of obtaining the extension for Taub-NUT spacetime is generalized in a non-singular manner. The Killing vectors that define non-singular spaces of non-null orbits are derived and applied. The global structure of spacetime is discussed. The non-singular conformal geometry of theinfinities is derived. The Killing horizons are present.

Tue, 09 Mar 2021
12:00
Virtual

The gravitational spin Hall effect

Lars Andersson
(Albert Einstein Institute)
Abstract

The propagation of high-frequency electromagnetic waves can be analyzed using the geometrical optics approximation. In the case of large but finite frequencies, the geometrical optics approximation is no longer accurate, and polarization-dependent corrections at first order in wavelength modify the propagation of light in an inhomogenous medium via a spin-orbit coupling mechanism. This effect, known as the spin Hall effect of light, has been experimentally observed. In this talk I will discuss recent work which generalizes the spin Hall effect to the propagation of light and gravitational waves in inhomogenous spacetimes. This is based on joint work with Marius Oancea and Jeremie Joudioux.

Tue, 23 Feb 2021
12:00
Virtual

Twistors, integrability, and 4d Chern-Simons theory

Roland Bittleston
(Cambridge DAMTP)
Abstract

I will connect approaches to classical integrable systems via 4d Chern-Simons theory and via symmetry reductions of the anti-self-dual Yang-Mills equations. In particular, I will consider holomorphic Chern-Simons theory on twistor space, defined using a range of meromorphic (3,0)-forms. On shell these are, in most cases, found to agree with actions for anti-self-dual Yang-Mills theory on space-time. Under symmetry reduction, these space-time actions yield actions for 2d integrable systems. On the other hand, performing the symmetry reduction directly on twistor space reduces the holomorphic Chern-Simons action to 4d Chern-Simons theory.

Tue, 09 Feb 2021
12:00

The stability of Kaluza-Klein spacetimes

Zoe Wyatt
(Edinburgh)
Abstract

Spacetimes with compact directions play an important role in supergravity and string theory. The simplest such example is the Kaluza-Klein spacetime, where the compact space is a flat torus. An interesting question to ask is whether this spacetime, when viewed as an initial value problem, is stable to small perturbations of initial data. In this talk I will discuss the global, non-linear stability of the Kaluza-Klein spacetime to toroidal-independent perturbations and the particular nonlinear structure appearing in the associated PDE system.

Tue, 26 Jan 2021
12:00

New results for gravitational binary dynamics from QFT amplitudes

Mao Zeng
(Oxford (Theoretical Physics))
Abstract

Precision predictions for binary mergers are essential for the nascent field of gravitational wave astronomy. The initial inspiral part can be treated perturbatively. We present results for the post-Minkowskian expansion of conservative binary dynamics, previously available only at the 2nd order for several decades, at the 3rd and 4th orders in the expansion. Our calculations are based on quantum field theory and use powerful methods developed in the modern scattering amplitudes program, as well as loop integration techniques developed for precision collider physics. Furthermore, we take initial steps in calculating radiative binary dynamics and obtain analytically the total radiated energy in hyperbolic black hole scattering, at the lowest order in G but all orders in velocity.

Tue, 17 Nov 2020
12:00
Virtual

Causal Relations At Infinity

Peter Cameron
(DAMTP Cambridge)
Abstract

Motivated by an attempt to construct a theory of quantum gravity as a perturbation around some flat background, Penrose has shown that, despite being asymptotically flat, there is an inconsistency between the causal structure at infinity of Schwarzschild and Minkowski spacetimes. This suggests that such a perturbative approach cannot possibly work. However, the proof of this inconsistency is specific to 4 spacetime dimensions. In this talk I will discuss how this result extends to higher (and lower) dimensions. More generally, I will consider examples of how the causal structure of asymptotically flat spacetimes are affected by dimension and by the presence of mass (both positive and negative). I will then show how these ideas can be used to prove a higher dimensional extension of the positive mass theorem of Penrose, Sorkin and Woolgar.

Tue, 03 Nov 2020
12:00
Virtual

BV formalism, QFT and Gravity: a Homotopy perspective

Tommaso Macrelli
(Dept of Mathematics University of Surrey)
Abstract

After a review of Batalin-Vilkovisky formalism and homotopy algebras, we discuss how these structures emerge in quantum field theory and gravity. We focus then on the application of these sophisticated mathematical tools to scattering amplitudes (both tree- and loop-level) and to the understanding of the dualities between gauge theories and gravity, highlighting generalizations of old results and presenting new ones.

Tue, 20 Oct 2020
12:00
Virtual

Construction of Cauchy data for the dynamical formation of apparent horizons and the Penrose Inequality

Martin Lesourd
(BHI Harvard)
Abstract

We construct a class of Cauchy initial data without (marginally) trapped surfaces whose future evolution is a trapped region bounded by an apparent horizon, i.e., a smooth hypersurface foliated by MOTS. The estimates obtained in the evolution lead to the following conditional statement: if Kerr Stability holds, then this kind of initial data yields a class of scale critical vacuum examples of Weak Cosmic Censorship and the Final State Conjecture. Moreover, owing to estimates for the ADM mass of the data and the area of the MOTS, the construction gives a fully dynamical vacuum setting in which to study the Spacetime Penrose Inequality. We show that the inequality is satisfied for an open region in the Cauchy development of this kind of initial data, which itself is controllable by the initial data. This is joint work with Nikos Athanasiou https://arxiv.org/abs/2009.03704.

Tue, 21 Jul 2020
12:00

Conformal Geometry of Null Infinity, including gravitational waves

Yannick Herfray
(ULB Brussells)
Abstract

Since the seminal work of Penrose, it has been understood that conformal compactifications (or "asymptotic simplicity") is the geometrical framework underlying Bondi-Sachs' description of asymptotically flat space-times as an asymptotic expansion. From this point of view the asymptotic boundary, a.k.a "null-infinity", naturally is a conformal null (i.e degenerate) manifold. In particular, "Weyl rescaling" of null-infinity should be understood as gauge transformations. As far as gravitational waves are concerned, it has been well advertised by Ashtekar that if one works with a fixed representative for the conformal metric, gravitational radiations can be neatly parametrized as a choice of "equivalence class of metric-compatible connections". This nice intrinsic description however amounts to working in a fixed gauge and, what is more, the presence of equivalence class tend to make this point of view tedious to work with.

I will review these well-known facts and show how modern methods in conformal geometry (namely tractor calculus) can be adapted to the degenerate conformal geometry of null-infinity to encode the presence of gravitational waves in a completely geometrical (gauge invariant) way: Ashtekar's (equivalence class of) connections are proved to be in 1-1 correspondence with choices of (genuine) tractor connection, gravitational radiation is invariantly described by the tractor curvature and the degeneracy of gravity vacua correspond to the degeneracy of flat tractor connections. The whole construction is fully geometrical and manifestly conformally invariant.

Tue, 23 Jun 2020
12:00

Cluster patterns in Landau and Leading Singularities via the Amplituhedron

Matteo Parisi
(Oxford)
Abstract

In this talk I will present some recent explorations of cluster-algebraic patterns in the building blocks of scattering amplitudes in N = 4 super Yang-Mills theory. In particular, I will first briefly introduce the main characters on stage, i.e. Leading Singularities, Landau singularities, the amplituhedron and cluster algebras. I will then present my main conjecture, "LL-adjacency", which makes all the above characters play together: given a maximal cut of a loop amplitude, Landau singularities and poles of each Yangian invariant appearing in any representation of the corresponding Leading Singularities can be found together in a cluster.  I will explain how the conjecture has been tested for all one-loop amplitudes up to 9 points using cluster algebraic and amplituhedron-based methods.  Finally, I will discuss implications for computing loop amplitudes and their singularity structure, and open research directions.

This is based on the joint work with Ömer Gürdoğan (arXiv: 2005.07154).

Tue, 19 May 2020
12:00

Feynman propagators from the worldsheet

Yvonne Geyer
(Chulalongkorn University)
Abstract

Ambitwistor strings are a class of holomorphic worldsheet models that directly describe massless quantum field theories, such as supergravity and super Yang-Mills. Their correlators give remarkably compact amplitude representations, known as the CHY formulas: characteristic worldsheet integrals that are fully localized on a set of polynomial constraints known as the scattering equations. Moreover, the ambitwistor string models provide a natural way of extending these formulas to loop level, where the constraints can be used to simplify the formulas (originally on higher genus curves) to 'forward limit-like' constructions on nodal spheres. After reviewing these developments, I will discuss one of the peculiar features of this approach: the worldsheet formulas on nodal spheres result in a non-standard integrand representation that makes it difficult to e.g. apply established integration techniques. While several approaches for addressing this look feasible or have been put forward in the literature, they only work for the simplest toy models. Taking inspiration from these attempts, I want to discuss a novel strategy to overcome this difficulty, and formulate compact worldsheet formulas with standard Feynman propagators.

Tue, 12 May 2020
12:00

Summing scalar Feynman diagrams

Hadleigh Frost
(Oxford)
Abstract

A motivation in the development of string theory was the 'duality' flip, exchanging the s- and t-channels, which relates all the cubic Feynman graphs at each order in perturbation theory, with fixed planar structure. In string theory, we can understand this as coming from the moduli spaces of marked surfaces, with the cubic diagrams corresponding to complete triangulations. I will describe how geometric-type cluster algebras give a surprising 'linear' way to talk about the same combinatorial problem, using results from work with N Arkani-Hamed and H Thomas and G Salvatori. This gives new ways to compute cubic scalar amplitudes, and new families of integrals generalizing the Veneziano amplitude.