Forthcoming events in this series


Thu, 12 Nov 2015

14:00 - 15:00
L4

The monoidal structure on strict polynomial functors and adjoints of the Schur functor

Rebecca Reischuk
(Bielefeld)
Abstract

Firstly, we will discuss how the category of strict polynomial functors can be endowed with a monoidal structure, including concrete calculations. It is well-known that the above category is equivalent to the category of modules over the Schur algebra. The so-called Schur functor in turn relates the category of modules over the Schur algebra to the category of representations of the symmetric group which posseses a monoidal structure given by the Kronecker product. We show that the Schur functor is monoidal with respect to these structures.
Finally, we consider the right and left adjoints of the Schur functor. We explain how these can be expressed in terms of one another using Kuhn duality and the central role the monoidal structure on strict polynomial functors plays in this context.
 

Thu, 29 Oct 2015

14:00 - 15:00
L4

Classifying $A_{\mathfrak{q}}(\lambda)$ modules by their Dirac cohomology

Pavle Pandzic
(University of Zagreb)
Abstract

We will briefly review the notions of Dirac cohomology and of $A_{\mathfrak{q}}(\lambda)$ modules of real reductive groups, and recall a formula for the Dirac cohomology of an $A_{\mathfrak{q}}(\lambda)$ module. Then we will discuss to what extent an $A_{\mathfrak{q}}(\lambda)$ module is determined by its Dirac cohomology. This is joint work with Jing-Song Huang and David Vogan.

Wed, 14 Oct 2015

10:00 - 11:00
L4

Center of quiver Hecke algebras and cohomology of quiver varieties

Prof. Peng Shan
Abstract

I will explain how to relate the center of a cyclotomic quiver Hecke algebras to the cohomology of Nakajima quiver varieties using a current algebra action. This is a joint work with M. Varagnolo and E. Vasserot.
 

Tue, 23 Jun 2015

15:30 - 16:30
L1

Analytic and Arithmetic Geometry Workshop: Quasi-abelian categories in analytic geometry

Federico Bambozzi
(University of Regensburg)
Abstract

I will describe a categorical approach to analytic geometry using the theory of quasi-abelian closed symmetric monoidal categories which works both for Archimedean and non-Archimdedean base fields. In particular I will show how the weak G-topologies of (dagger) affinoid subdomains can be characterized by homological method. I will end by briefly saying how to generalize these results for characterizing open embeddings of Stein spaces. This project is a collaboration with Oren Ben-Bassat and Kobi Kremnizer.

Tue, 23 Jun 2015

14:00 - 15:00
L1

Analytic and Arithmetic Geometry Workshop: Overconvergent global analytic geometry

Frederic Paugam
(Institut de Mathématiques de Jussieu (Paris 7))
Abstract

We will discuss our approach to global analytic geometry, based on overconvergent power series and functors of functions. We will explain how slight modifications of it allow us to develop a derived version of global analytic geometry. We will finish by discussing applications to the cohomological study of arithmetic varieties.

Tue, 23 Jun 2015

10:00 - 11:00
L1

Analytic and Arithmetic Geometry Workshop: Variations on quadratic Chabauty

Jennifer Balakrishnan
((Oxford University))
Abstract

We describe how p-adic height pairings allow us to find integral points on hyperelliptic curves, in the spirit of Kim's nonabelian Chabauty program. In particular, we discuss how to carry out this ``quadratic Chabauty'' method over quadratic number fields (joint work with Amnon Besser and Steffen Mueller) and present related ideas to find rational points on bielliptic genus 2 curves (joint work with Netan Dogra).

Thu, 27 Nov 2014

14:00 - 16:00
L4

Geometric Satake Equivalence

Pavel Safronov
(University of Oxford)
Abstract

Both sides of the geometric Langlands correspondence have natural Hecke
symmetries. I will explain an identification between the Hecke
symmetries on both sides via the geometric Satake equivalence. On the
abelian level it relates the topology of a variety associated to a group
and the representation category of its Langlands dual group.
 

Thu, 30 Oct 2014

14:00 - 16:00
L4

Transversal slices to conjugacy classes in algebraic groups and Lustig's partition.

Alexey Sevastyanov
(The University of Aberdeen)
Abstract

I shall show that for every conjugacy class O in a connected semisimple algebraic group G over an algebraically closed field of characteristic good for G one can find a special transversal slice S to the set of conjugacy classes in G such that O intersects S and dim O=codim S. The construction of the slice utilizes some new combinatorics related to invariant planes for the action of Weyl group elements in the reflection representation. The condition dim O=codim S is checked using some new mysterious results by Lusztig on intersection of conjugacy classes in algebraic groups with Bruhat cells.

Thu, 23 Oct 2014

14:00 - 15:00
L4

Towards the compatibility of Geometric Langlands with the extended Whittaker model

Dario Beraldo
(University of Oxford)
Abstract

Let $G$ be a connected reductive group and $X$ a smooth complete curve, both defined over an algebraically closed field of characteristic zero. Let $Bun_G$ denote the stack of $G$-bundles on $X$. In analogy with the classical theory of Whittaker coefficients for automorphic functions, we construct a “Fourier transform” functor, called $coeff_{G}$, from the DG category of D-modules on $Bun_G$ to a certain DG category $Wh(G, ext)$, called the extended Whittaker category. Combined with work in progress by other mathematicians and the speaker, this construction allows to formulate the compatibility of the Langlands duality functor  $$\mathbb{L}_G : \operatorname{IndCoh}_{N}(LocSys_{\check{G}} ) \to D(Bun_G)$$ with the Whittaker model. For $G = GL_n$ and $G = PGL_n$, we prove that $coeff_G$ is fully faithful. This result guarantees that, for those groups, $\mathbb{L}_G$ is unique (if it exists) and necessarily fully faithful.

Thu, 12 Jun 2014

14:00 - 16:00
L4

Introduction to Factorization

Emily Cliff & Robert Laugwitz
(University of Oxford)
Abstract

Factorization is a property of global objects that can be built up from local data. In the first half, we introduce the concept of factorization spaces, focusing on two examples relevant for the Geometric Langlands programme: the affine Grassmannian and jet spaces.

In the second half, factorization algebras will be defined including a discussion of how factorization spaces and commutative algebras give rise to examples. Finally, chiral homology is defined as a way to give global invariants of such objects.

Tue, 10 Jun 2014

15:45 - 16:45
L4

What is the [Categorical] Weil Representation?

Shamgar Gurevich
(University of Wisconsin - Madison)
Abstract
The Weil representation is a central object in mathematics responsible for many important results. Given a symplectic vector space V over a finite field (of odd characteristic) one can construct a "quantum" Hilbert space H(L) attached to a Lagrangian subspace L in V. In addition, one can construct a Fourier Transform F(M,L): H(L)→H(M), for every pair of Lagrangians (L,M), such that F(N,M)F(M,L)=F(N,L), for every triples (L,M,N) of Lagrangians. This can be used to obtain a natural “quantum" space H(V) acted by the symplectic group Sp(V), obtaining the Weil representation. In the lecture I will give elementary introduction to the above constructions, and discuss the categorification of these Fourier transforms, what is the related sign problem, and what is its solution. The outcome is a natural category acted by the algebraic group G=Sp, obtaining the categorical Weil representation. The sign problem was worked together with Ofer Gabber (IHES).
Thu, 05 Jun 2014

14:00 - 16:00
L4

Motivic L-functions

Prof. Minhyong Kim
(Mathematical Institute)
Abstract

This talk will be a brief introduction to some standard conjectures surrounding motivic L-functions, which might be viewed as the arithmetic motivation for Langlands reciprocity.

Thu, 29 May 2014

14:00 - 16:00
L4

The Ran space and contractibility of the space of rational maps

Emily Cliff
Abstract

We will define the Ran space as well as Ran space versions of some of the prestacks we've already seen, and explain what is meant by the homology of a prestack. Following Gaitsgory and possibly Drinfeld, we'll show how the Ran space machinery can be used to prove that the space of rational maps is homologically contractible.

Thu, 22 May 2014

14:00 - 16:00

Generic maps

Balazs Szendroi
(Mathematical Institute, Oxford)
Abstract
I will give a survey of some parts of Barlev's paper on moduli problems of generic data in algebraic geometry, such as moduli of generically defined maps between varieties, and moduli of generic reductions of the structure group of a principal bundle.
Thu, 15 May 2014

14:00 - 16:00
L4

D-modules on prestacks

Nick Cooney
(Mathematical Insitute, Oxford)
Abstract

This talk will be an introduction to the notion of D-modules on

prestacks. We will begin by discussing Grothendieck's definition of

crystals of quasi-coherent sheaves on a smooth scheme X, and briefly

indicate how the category of such objects is equivalent to that of

modules over the sheaf of differential operators on X. We will then

explain what we mean by a prestack and define the category of

quasi-coherent sheaves on them. Finally, we consider how the

crystalline approach may be used to give a suitable generalization

of D-modules to this derived setting.

Thu, 08 May 2014

14:00 - 16:00
L4

An introduction to infinity categories.

Tobias Dyckerhoff
Abstract

Infinity categories simultaneously generalize topological spaces and categories. As a result, their study benefits from a combination of techniques from homotopy theory and category theory. While the theory of ordinary categories provides a suitable context to analyze objects up to isomorphism (e.g. abelian groups), the theory of infinity categories provides a reasonable framework to study objects up to a weaker concept of identification (e.g. complexes of abelian groups). In the talk, we will introduce infinity categories from scratch, mention some of the fundamental results, and try to illustrate some features in concrete examples.

Thu, 01 May 2014

14:00 - 16:00
L4

The geometric Langlands conjecture

Dario Baraldo
(University of Oxford)
Abstract
In the first meeting of this reading group, I will begin with an overview of the statement of the geometric Langlands conjecture. Then, following Arinkin and Gaitsgory, I will outline a strategy of the proof in the case of GL_n. Some ingredients of the proof are direct translations of number theoretic constructions, while others are specific to the geometric situation. No prior familiarity with the subject is assumed. However, a number of technical tools is necessary for both the statement and the proof; in this talk I intend to list these tools (to be explained in future talks) and motivate why they are essential.
Thu, 27 Mar 2014

14:00 - 15:00
L4

Higher differential operators and genera of algebraic varieties

Nick Rosenblyum
Abstract

We will describe a generalization of the algebra of differential operators, which gives a

geometric approach to quantization of cotangent field theories. This construction is compatible

with "integration" thus giving a local-to-global construction of volume forms on derived mapping

spaces using a version of non-abelian duality. These volume forms give interesting invariants of

varieties such as the Todd genus, the Witten genus and the B-model operations on Hodge

cohomology.

Thu, 05 Dec 2013

14:00 - 15:00
L4

Pointed Hopf Algebras with triangular decomposition.

Robert Laugwitz
(Oxford)
Abstract

In this talk, two concepts are brought together: Algebras with triangular decomposition (as studied by Bazlov & Berenstein) and pointed Hopf algebra. The latter are Hopf algebras for which all simple comodules are one-dimensional (there has been recent progress on classifying all finite-dimensional examples of these by Andruskiewitsch & Schneider and others). Quantum groups share both of these features, and we can obtain possibly new classes of deformations as well as a characterization of them.