Fri, 18 Jun 2021

14:00 - 15:00
Virtual

Jacobson's Commutativity Problem

Mike Daas
(Leiden University)
Abstract

It is a well-known fact that Boolean rings, those rings in which $x^2 = x$ for all $x$, are necessarily commutative. There is a short and completely elementary proof of this. One may wonder what the situation is for rings in which $x^n = x$ for all $x$, where $n > 2$ is some positive integer. Jacobson and Herstein proved a very general theorem regarding these rings, and the proof follows a widely applicable strategy that can often be used to reduce questions about general rings to more manageable ones. We discuss this strategy, but will also focus on a different approach: can we also find ''elementary'' proofs of some special cases of the theorem? We treat a number of these explicit computations, among which a few new results.

Fri, 18 Jun 2021

14:00 - 15:00
Virtual

Analysis of temporal event sequences: challenges and opportunities in healthcare

Dr Maria-Cruz Villa Uriol
(Department of Computer Science The University of Sheffield)
Abstract

Our society is witnessing an exponential growth of data being generated. Among the various data types being routinely collected, event logs are available in a wide variety of domains. Despite historical and structural digitalisation challenges, healthcare is an example where the analysis of event logs might bring a new revolution.

In this talk, I will present our recent efforts in analysing and exploring temporal event data sequences extracted from event logs. Our visual analytics approach is able to summarise and seamlessly explore large volumes of complex event data sequences. We are able to easily derive observations and findings that otherwise would have required significant investment of time and effort.  To facilitate the identification of findings, we use a hierarchical clustering approach to cluster sequences according to time and a novel visualisation environment.  To control the level of detail presented to the analyst, we use a hierarchical aggregation tree and an Align-Score-Simplify strategy based on an information score.   To show the benefits of this approach, I will present our results in three real world case studies: CUREd, Outpatient clinics and MIMIC-III. These will respectively cover the analysis of calls and responses of emergency services, the efficiency of operation of two outpatient clinics, and the evolution of patients with atrial fibrillation hospitalised in an acute and critical care unit. To finalise the talk, I will share our most recent work in the analysis of clinical events extracted from Electronic Health Records for the study of multimorbidity.

Fri, 18 Jun 2021

13:30 - 17:00

Groups and Geometry in the South East

Piotr Przytycki, Elia Fioravanti, Rylee Lyman
(McGill & Bonn & Rutgers-Newark)
Further Information

Tits Alternative in dimension 2

1:30-2:30PM

Piotr Przytycki (McGill)

A group G satisfies the Tits alternative if each of its finitely generated subgroups contains a non-abelian free group or is virtually solvable. I will sketch a proof of a theorem saying that if G acts geometrically on a simply connected nonpositively curved complex built of equilateral triangles, then it satisfies the Tits alternative. This is joint work with Damian Osajda.

Coarse-median preserving automorphisms

2:45-3:45PM

Elia Fioravanti (Bonn)

We study fixed subgroups of automorphisms of right-angled Artin and Coxeter groups. If Phi is an untwisted automorphism of a RAAG, or an arbitrary automorphism of a RACG, we prove that Fix(Phi) is finitely generated and undistorted. Up to replacing Phi with a power, the fixed subgroup is actually quasi-convex with respect to the standard word metric (which implies that it is separable and a virtual retract, by work of Haglund and Wise). Our techniques also apply to automorphisms of hyperbolic groups and to certain automorphisms of hierarchically hyperbolic groups. Based on arXiv:2101.04415.

Some new CAT(0) free-by-cyclic groups

4:00-5:00PM

Rylee Lyman (Rutgers-Newark)

I will construct several infinite families of polynomially-growing automorphisms of free groups whose mapping tori are CAT(0) free-by-cyclic groups. Such mapping tori are thick, and thus not relatively hyperbolic. These are the first families comprising infinitely many examples for each rank of the nonabelian free group; they contrast strongly with Gersten's example of a thick free-by-cyclic group which cannot be a subgroup of a CAT(0) group.

 

Fri, 18 Jun 2021

13:00 - 13:30
Virtual

Homogenisation to Link Scales in Tendon Tissue Engineering

Amy Kent
(Mathematical Institute (University of Oxford))
Abstract

Tendon tissue engineering aims to grow functional tissue in the lab. Tissue is grown inside a bioreactor which controls both the mechanical and biochemical environment. As tendon cells alter their behaviour in response to mechanical stresses, designing suitable bioreactor loading regimes forms a key component in ensuring healthy tissue growth.  

Linking the forces imposed by the bioreactor to the shear stress experienced by individual cell is achieved by homogenisation using multiscale asymptotics. We will present a continuum model capturing fluid-structure interaction between the nutrient media and the fibrous scaffold where cells grow. Solutions reflecting different experimental conditions will be discussed in view of the implications for shear stress distribution experienced by cells across the bioreactor.  

Fri, 18 Jun 2021
12:45

Generalized entropy in topological string theory

Gabriel Wong
(Fudan University)
Abstract

The holographic entanglement entropy formula identifies the generalized entropy of the bulk AdS spacetime with the entanglement entropy of the boundary CFT. However the bulk microstate interpretation of the generalized entropy remains poorly understood. Progress along this direction requires understanding how to define Hilbert space factorization and entanglement entropy in the bulk closed string theory.   As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A model, which enjoys a gauge-string duality.   We define a notion of generalized entropy for closed strings on the resolved conifold using the replica trick.   As in AdS/CFT, we find this is dual to (defect) entanglement entropy in the dual Chern Simons gauge theory.   Our main result is a bulk microstate interpretation of generalized entropy in terms of open strings and their edge modes, which we identify as entanglement branes.   

 

More precisely, we give a self consistent factorization of the closed string Hilbert space which introduces open string edge modes transforming under a q-deformed surface symmetry group. Compatibility with this symmetry requires a q-deformed definition of entanglement entropy. Using the topological vertex formalism, we define the Hartle Hawking state for the resolved conifold and compute its q-deformed entropy directly from the reduced density matrix.   We show that this is the same as the generalized entropy.   Finally, we relate non local aspects of our factorization map to analogous phenomenon recently found in JT gravity.

Thu, 17 Jun 2021

16:00 - 17:00

Identifiability in inverse stochastic optimal control

HAOYANG CAO
(Alan Turing Institute)
Abstract

Abstract: In this work, we analyze a class of stochastic inverse optimal control problems with entropy regularization. We first characterize the set of solutions for the inverse control problem. This solution set exemplifies the issue of degeneracy in generic inverse control problems that there exist multiple reward or cost functions that can explain the displayed optimal behavior. Then we establish one resolution for the degeneracy issue by providing one additional optimal policy under a different discount factor. This resolution does not depend on any prior knowledge of the solution set. Through a simple numerical experiment with deterministic transition kernel, we demonstrate the ability of accurately extracting the cost function through our proposed resolution.

 

Joint work with Sam Cohen (Oxford) and Lukasz Szpruch (Edinburgh).

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Primal-dual Newton methods, with application to viscous fluid dynamics

Georg Stadler
(New York University)
Abstract

I will discuss modified Newton methods for solving nonlinear systems of PDEs. These methods introduce additional variables before deriving the Newton linearization. These variables can then often be eliminated analytically before solving the Newton system, such that existing solvers can be adapted easily and the computational cost does not increase compared to a standard Newton method. The resulting algorithms yield favorable convergence properties. After illustrating the ideas on a simple example, I will show its application for the solution of incompressible Stokes flow problems with viscoplastic constitutive relation, where the additionally introduced variable is the stress tensor. These models are commonly used in earth science models. This is joint work with Johann Rudi (Argonne) and Melody Shih (NYU).

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Wilson Loops, Cusps and Holography

Pietro Ferrero
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 17 Jun 2021

13:00 - 14:00
Virtual

Modulation of synchronization in neural networks by a slowly varying ionic current

Sue Ann Campbell
(University of Waterloo)
Further Information

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah.

Abstract

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah

Thu, 17 Jun 2021

12:00 - 13:00
Virtual

Willmore Surfaces: Min-Max and Morse Index

Alexis Michelat
(University of Oxford)
Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

The integral of mean curvature squared is a conformal invariant that measures the distance from a given immersion to the standard embedding of a round sphere. Following work of Robert Bryant who showed that all Willmore spheres in the 3-sphere are conformally minimal, Robert Kusner proposed in the early 1980s to use the Willmore energy to obtain an “optimal” sphere eversion, called the min-max sphere eversion.

We will present a method due to Tristan Rivière that permits to tackle a wide variety of min-max problems, including ones about the Willmore energy. An important step to solve Kusner’s conjecture is to determine the Morse index of branched Willmore spheres, and we show that the Morse index of conformally minimal branched Willmore spheres is equal to the index of a canonically associated matrix whose dimension is equal to the number of ends of the dual minimal surface.

Thu, 17 Jun 2021
11:30
Virtual

Compressible types in NIP theories

Itay Kaplan
(The Hebrew University of Jerusalem)
Abstract

I will discuss compressible types and relate them to uniform definability of types over finite sets (UDTFS), to uniformity of honest definitions and to the construction of compressible models in the context of (local) NIP. All notions will be defined during the talk.
Joint with Martin Bays and Pierre Simon.

Thu, 17 Jun 2021
10:00
Virtual

Systolic Complexes and Group Presentations

Mireille Soergel
(Université de Bourgogne)
Abstract

We introduce the notion of systolic complexes and give conditions on presentations to construct such complexes using Cayley graphs.

We consider Garside groups to find examples of groups admitting such a presentation.
 

Wed, 16 Jun 2021

16:30 - 18:00

Some recent results on Structural Reflection

Joan Bagaria
(ICREA and University of Barcelona)
Abstract

The general Structural Reflection (SR) principle asserts that for every definable, in the first-order language of set theory, possibly with parameters, class $\mathcal{C}$ of relational structures of the same type there exists an ordinal $\alpha$ that reflects $\mathcal{C}$, i.e.,  for every $A$ in $\mathcal{C}$ there exists $B$ in $\mathcal{C}\cap V_\alpha$ and an elementary embedding from $B$ into $A$. In this form, SR is equivalent to Vopenka’s Principle (VP). In my talk I will present some different natural variants of SR which are equivalent to the existence some well-known large cardinals weaker than VP. I will also consider some forms of SR, reminiscent of Chang’s Conjecture, which imply the existence of large cardinal principles stronger than VP, at the level of rank-into-rank embeddings and beyond. The latter is a joint work with Philipp Lücke.

Tue, 15 Jun 2021

15:30 - 16:30
Virtual

Are random matrix models useful in biological systems?

Jon Pitchford
(University of York)
Abstract

For five decades, mathematicians have exploited the beauties of random matrix theory (RMT) in the hope of discovering principles which govern complex ecosystems. While RMT lies at the heart of the ideas, their translation toward biological reality requires some heavy lifting: dynamical systems theory, statistics, and large-scale computations are involved, and any predictions should be challenged with empirical data. This can become very awkward.

In addition to a morose journey through some of my personal failures to make RMT meet reality, I will try to sketch out some more constructive future perspectives. In particular, new methods for microbial community composition, dynamics and evolution might allow us to apply RMT ideas to the treatment of cystic fibrosis. In addition, in fisheries I will argue that sometimes the very absence of an empirical dataset can add to the practical value of models as tools to influence policy.

 

Tue, 15 Jun 2021
14:30
Virtual

Numerical Relativity

Katy Clough
(Department of Physics)
Abstract

Numerical relativity allows us to simulate the behaviour of regions of space and time where gravity is strong and dynamical. For example, it allows us to calculate precisely the gravitational waveform that should be generated by the merger of two inspiralling black holes. Since the first detection of gravitational waves from such an event in 2015, banks of numerical relativity “templates” have been used to extract further information from noisy data streams. In this talk I will give an overview of the field - what are we simulating, why, and what are the main challenges, past and future.

-

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 15 Jun 2021
14:15
Virtual

Harish-Chandra Lefschetz principle for branching laws of general linear groups

Kei Yuen Chan
(Fudan University)
Abstract

The Harish-Chandra Lefschetz principle asserts representation theory for real groups, p-adic groups and automorphic forms should be placed on an equal footing. A particular example in this aspect is that Ciubotaru and Trapa constructed Arakawa-Suzuki type functors between category of Harish-Chandra modules and category of graded Hecke algebra modules, giving an explicit connection on the representation categories between p-adic and real sides. 

This talk plans to begin with comparing the representation theory between real and p-adic general linear groups, such as unitary and unipotent representations. Then I shall explain results in more details on the p-adic branching law from GL(n+1) to GL(n), including branching laws for Arthur type representations (one of the non-tempered Gan-Gross-Prasad conjectures). The analogous results and predictions on the real group side will also be discussed. Time permitting, I will explain a notion of left-right Bernstein-Zelevinsky derivatives and its applications on branching laws.
 

Tue, 15 Jun 2021

14:00 - 15:00
Virtual

A generative model for reciprocity and community detection in networks

Caterina De Bacco
(Max Planck Institute for Intelligent Systems)
Abstract

We present a probabilistic generative model and efficient algorithm to model reciprocity in directed networks. Unlike other methods that address this problem such as exponential random graphs, it assigns latent variables as community memberships to nodes and a reciprocity parameter to the whole network rather than fitting order statistics. It formalizes the assumption that a directed interaction is more likely to occur if an individual has already observed an interaction towards her. It provides a natural framework for relaxing the common assumption in network generative models of conditional independence between edges, and it can be used to perform inference tasks such as predicting the existence of an edge given the observation of an edge in the reverse direction. Inference is performed using an efficient expectation-maximization algorithm that exploits the sparsity of the network, leading to an efficient and scalable implementation. We illustrate these findings by analyzing synthetic and real data, including social networks, academic citations and the Erasmus student exchange program. Our method outperforms others in both predicting edges and generating networks that reflect the reciprocity values observed in real data, while at the same time inferring an underlying community structure. We provide an open-source implementation of the code online.

arXiv link: https://arxiv.org/abs/2012.08215

Tue, 15 Jun 2021
10:00
Virtual

Three-Point Energy Correlator in N=4 Super Yang-Mills Theory

Kai Yan
(Max Planck Munich)
Abstract

Event shape observables describe how energy is distributed in the final state in scattering processes. Recent years have seen increasing interest from different physics areas in event shapes, in particular the energy correlators. They define a class of observable quantities which admit a simple and unified formulation in quantum  field theory.

Three-point energy correlators (EEEC) measure the energy flow through three detectors as a function of the three angles between them. We analytically compute the one-loop EEEC in maximally supersymmetric Yang-Mills theory. The result is a linear combination of logarithms and dilogarithms, decomposed onto a basis of single-valued transcendental functions. Its symbol contains 16 alphabet letters, revealing a dihedral symmetry of the three-point event shape.  Our results represent the first perturbative computation of a three-parameter event-shape observable, providing information on the function space at higher-loop order, and valuable input to the study of conformal light-ray OPE.

Mon, 14 Jun 2021

17:30 - 18:30
Virtual

TBA

Mon, 14 Jun 2021

16:00 - 17:00

Linear-Quadratic Stochastic Differential Games on  Directed Chain Networks

JEAN-PIERRE FOUQUE
(University of California Santa Barbara)
Abstract

We present linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque, and Ichiba in a previous work. We solve explicitly for Nash equilibria with a finite number of players and we study more general finite-player games with a mixture of both directed chain interaction and mean field interaction. We investigate and compare the corresponding games in the limit when the number of players tends to infinity. 

The limit is characterized by Catalan functions and the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain, with or without the presence of mean field interaction.

Joint work with Yichen Feng and Tomoyuki Ichiba.

Mon, 14 Jun 2021

16:00 - 17:00
Virtual

On the dynamics and rigidity of 3D incompressible MHD equations

Pin Yu
(Tsinghua University)
Abstract

The Alfven waves are fundamental wave phenomena in magnetized plasmas and the dynamics of Alfven waves are governed by the MHD system. In the talk,  we construct and study the long time behavior of (viscous and non-viscous) Alfven waves.

As applications, (1) We provide a rigorous justification for the following dynamical phenomenon observed in many contexts: the solution at the beginning behave like non-dispersive waves and the shape of the solution persists for a very long time (proportional to the Reynolds number); thereafter, the solution will be damped due to the long-time accumulation of the diffusive effects;

(2) We prove the rigidity aspects of the scattering problem for the MHD equations: We prove that the Alfven waves must vanish if their scattering fields vanish at infinities.

Mon, 14 Jun 2021

15:45 - 16:45
Virtual

The slope of a link computed via C-complexes

Ana Lecuona
(University of Glasgow)
Abstract

Together with Alex Degtyarev and Vincent Florence we introduced a new link invariant, called slope, of a colored link in an integral homology sphere. In this talk I will define the invariant, highlight some of its most interesting properties as well as its relationship to Conway polynomials and to the  Kojima–Yamasaki eta-function. The stress in this talk will be on our latest computational progress: a formula to calculate the slope from a C-complex.

Fri, 11 Jun 2021

16:00 - 17:00
Virtual

North Meets South

Jaclyn Lang and Jan Sbierski
(University of Oxford)
Abstract

Jaclyn Lang
Explicit Class Field Theory
Class field theory was a major achievement in number theory
about a century ago that presaged many deep connections in mathematics
that today are known as the Langlands Program.  Class field theory
associates to each number field an special extension field, called the
Hilbert class field, whose ring of integers satisfies unique
factorization, mimicking the arithmetic in the usual integers.  While
the existence of this field is always guaranteed, it is a difficult
problem to find explicit generators for the Hilbert class field in
general.  The theory of complex multiplication of elliptic curves is
essentially the only setting where there is an explicit version of class
field theory.  We will briefly introduce class field theory, highlight
what is known in the theory of complex multiplication, and end with an
example for the field given by a fifth root of 19.  There will be many
examples!

 

Jan Sbierski
The strength of singularities in general relativity
One of the many curious features of Einstein’s theory of general relativity is that the theory predicts its own breakdown at so-called gravitational singularities. The gravitational field in general relativity is modelled by a Lorentzian manifold — and thus a gravitational singularity is signalled by the geometry of the Lorentzian manifold becoming singular. In this talk I will first review the classical definition of a gravitational singularity along with a classification of their strengths. I will conclude with outlining newly developed techniques which capture the singularity at the level of the connection of Lorentzian manifolds.