Fri, 13 Feb 2015

10:00 - 11:00
L5

VerdErg - VETT, a new low-head hydropower generator: minimising the losses

Abstract

VerdErg Renewable Energy Ltd is developing a new hydropower unit for cost-effective energy generation at very low heads of pressure. The device is called the VETT after the underlying technology – Venturi Enhanced Turbine Technology. Flow into the VETT is split into two. The larger flow at low head transfers its energy to the smaller flow at a greater head. The smaller flow powers a conventional turbo-generator which can be a smaller, faster unit at an order of magnitude lower cost. Further, there are significant environmental benefits to fish and birds compared to the conventional hydropower solution. After several physical model test programmes* in the UK, France and The Netherlands along with CFD studies the efficiency now stands at 50%. We wish to increase that by understanding the major loss mechanisms and how they might be avoided or minimised.

The presentation will explain the VETT’s working principles and key relationships, together with some possible ideas for improvement. The comments of attendees on problem areas, potential solutions and how an enhanced understanding of key phenomena may be applied will be most welcome.

*(One was observed by Prof John Ockendon who identified a fairly extreme flow condition in a region previously thought to be benign.)

Thu, 12 Feb 2015

17:30 - 18:30
L6

Model theory and the distribution of orders in number fields

Jamshid Derakhshan
(Oxford University)
Abstract
Recently Kaplan, Marcinek, and Takloo-Bighash have proved an asymptotic formula for the number of orders of bounded discriminant  in a given quintic number field. An essential ingredient in their poof is a p-adic volume formula.  I will present joint results with Ramin Takloo Bighash on model-theoretic generalizations of the volume formulas and discuss connections to number theory.

 

Thu, 12 Feb 2015

16:00 - 17:00
C2

Introduction to conformal symmetry

Agnese Bissi
(Oxford)
Abstract

 In this talk I will present a basic introduction to conformal symmetry from a physicist perspective. I will talk about infinitesimal and finite conformal transformations and the conformal group in diverse dimensions. 

Thu, 12 Feb 2015

16:00 - 17:00
L5

Rational points on Kummer varieties

René Pannekoek
(Imperial College London)
Abstract

Given an abelian variety A over a number field k, its Kummer variety X is the quotient of A by the automorphism that sends each point P to -P. We study p-adic density and weak approximation on X by relating its rational points to rational points of quadratic twists of A. This leads to many examples of K3 surfaces over Q whose rational points lie dense in the p-adic topology, or in product topologies arising from p-adic topologies. Finally, the same method is used to prove that if the Brauer--Manin obstruction controls the failure of weak approximation on all Kummer varieties, then ranks of quadratic twists of (non-trivial) abelian varieties are unbounded. This last fact arises from joint work with David Holmes.

Thu, 12 Feb 2015
16:00
L4

Discrete time approximation of HJB equations via BSDEs with nonpositive jumps

Idris Kharroubi
(Université Paris Dauphine)
Abstract
We propose a new probabilistic numerical scheme for fully nonlinear equations of Hamilton-Jacobi-Bellman (HJB) type associated to stochastic control problems, which is based on the a recent Feynman-Kac representation by means of control randomization and backward stochastic differential equation with nonpositive jumps. We study a discrete time approximation for the minimal solution to this class of BSDE when the time step goes to zero, which provides both an approximation for the value function and for an optimal control in feedback form. We obtained a convergence rate without any ellipticity condition on the controlled diffusion coefficient.
Thu, 12 Feb 2015

16:00 - 17:00
L3

Convection of a reactive solute in a porous medium

Oliver Jensen
(Manchester)
Abstract

Abstract: Motivated loosely by the problem of carbon sequestration in underground aquifers, I will describe computations and analysis of one-sided two-dimensional convection of a solute in a fluid-saturated porous medium, focusing on the case in which the solute decays via a chemical reaction.   Scaling properties of the flow at high Rayleigh number are established and rationalized through an asymptotic model, that addresses the transient stability of a near-surface boundary layer and the structure of slender plumes that form beneath.  The boundary layer is shown to restrict the rate of solute transport to deep domains.  Knowledge of the plume structure enables slow erosion of the substrate of the reaction to be described in terms of a simplified free boundary problem.

Co-authors: KA Cliffe, H Power, DS Riley, TJ Ward

 

Thu, 12 Feb 2015

14:00 - 15:00
L5

The evolution of the universe recreated in a supercomputer

Professor Christian Klingenberg
(University of Wuerzburg)
Abstract

In this talk we will describe the steps towards self-consistent computer simulations of the evolution of the universe beginning soon after the Big Bang and ending with the formation of realistic stellar systems like the Milky Way. This is a multi-scale problem of vast proportions. The first step has been the Millennium Simulation, one of the largest and most successful numerical simulations of the Universe ever carried out. Now we are in the midst of the next step, where this is carried to a much higher level of physical fidelity on the latest supercomputing platforms. This talk will be illustrate how the role of mathematics is essential in this endeavor. Also computer simulations will be shown. This is joint work among others with Volker Springel.

 

Thu, 12 Feb 2015

12:00 - 13:00
L6

Twinning in Strained Ferroelastics: Microstructure and Statistics

Xiangdong Ding
(xi'an Jiatong University)
Abstract

The generation of functional interfaces such as superconducting and ferroelectric twin boundaries requires new ways to nucleate as many interfaces as possible in bulk materials and thin films. Materials with high densities of twin boundaries are often ferroelastics and martensites. Here we show that the nucleation and propagation of twin boundaries depend sensitively on temperature and system size. The geometrical mechanisms for the evolution of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to a Vogel-Fulcher law.We find that the complexity of the pattern can be well characterized by the number of junctions between twin boundaries. Materials with soft bulk moduli have much higher junction densities than those with hard bulk moduli. Soft materials also show an increase in the junction density with diminishing sample size. The change of the complexity and the number density of twin boundaries represents an important step forward in the development of ‘domain boundary engineering’, where the functionality of the materials is directly linked to the domain pattern.

Thu, 12 Feb 2015
11:00
C5

Matrix multiplication is determined by orthogonality and trace.

Chris Heunen
(Oxford)
Abstract

Everything measurable about a quantum system, as modelled by a noncommutative operator algebra, is captured by its commutative subalgebras. We briefly survey this programme, and zoom in one specific incarnation: any bilinear associative function on the set of n-by-n matrices over a field of characteristic not two, that makes the same vectors orthogonal as ordinary matrix multiplication and gives the same trace as ordinary matrix multiplication, must in fact be ordinary matrix multiplication (or its opposite). Model-theoretic questions about the hypotheses and scope of this theorem are raised.

Wed, 11 Feb 2015

16:00 - 17:00
C1

Subgroups of Aut($F_n$) and actions on CAT(0) spaces

Robert Kropholler
(Oxford)
Abstract

I will look at some decidability questions for subgroups of Aut($F_n$) for general $n$. I will then discuss semisimple actions of Aut($F_n$) on complete CAT(0) spaces proving that the Nielsen moves will act elliptically. I will also look at proving Aut($F_3$) is large and if time permits discuss the fact that Aut($F_n$) is not Kähler

Wed, 11 Feb 2015

11:00 - 12:30
N3.12

The Poincaré conjecture in dimensions 3 and 4.

Alejandro Betancourt
(Oxford)
Abstract

In this talk we will review some of the main ideas around Hamilton's program for the Ricci flow and see how they fit together to provide a proof of the Poincaré conjecture in dimension 3. We will then analyse this tools in the context of 4-manifolds.

Tue, 10 Feb 2015

17:00 - 18:00
C2

Spin projective representations of Weyl groups, Green polynomials, and nilpotent orbits

Dan Ciubotaru
(Oxford)
Abstract

The classification of irreducible representations of pin double covers of Weyl groups was initiated by Schur (1911) for the symmetric group and was completed for the other groups by A. Morris, Read and others about 40 years ago. Recently, a new relation between these projective representations, graded Springer representations, and the geometry of the nilpotent cone has emerged. I will explain these connections and the relation with a Dirac operator for (extended) graded affine Hecke algebras.  The talk is partly based on joint work with Xuhua He.

Tue, 10 Feb 2015
14:30
L6

Points in almost general position

Luka Milicevic
(Cambridge University)
Abstract

Erdős asked the following question: given a positive integer $n$, what is the largest integer $k$ such that any set of $n$ points in a plane, with no $4$ on a line, contains $k$ points no $3$ of which are collinear? Füredi proved that $k = o(n)$. Cardinal, Toth and Wood extended this result to $\mathbb{R}^3$, finding sets of $n$ points with no $5$ on a plane whose subsets with no $4$ points on a plane have size $o(n)$, and asked the question for the higher dimensions. For given $n$, let $k$ be largest integer such that any set of $n$ points in $\mathbb{R}^d$ with no more than $d + 1$ cohyperplanar points, has $k$ points with no $d + 1$ on a hyperplane. Is $k = o(n)$? We prove that $k = o(n)$ for any fixed $d \geq 3$.

Tue, 10 Feb 2015

14:30 - 15:00
L5

Expander parallel $\ell_0$ decoding

Rodrigo Mendoza-Smith
(University of Oxford)
Abstract

We present an algorithm, Parallel-$\ell_0$, for {\em combinatorial compressed sensing} (CCS), where the sensing matrix $A \in \mathbb{R}^{m\times n}$ is the adjacency matrix of an expander graph. The information preserving nature of expander graphs allow the proposed algorithm to provably recover a $k$-sparse vector $x\in\mathbb{R}^n$ from $m = \mathcal{O}(k \log (n/k))$ measurements $y = Ax$ via $\mathcal{O}(\log k)$ simple and parallelizable iterations when the non-zeros in the support of the signal form a dissociated set, meaning that all of the $2^k$ subset sums of the support of $x$ are pairwise different. In addition to the low computational cost, Parallel-$\ell_0$ is observed to be able to recover vectors with $k$ substantially larger than previous CCS algorithms, and even higher than $\ell_1$-regularization when the number of measurements is significantly smaller than the vector length.

Tue, 10 Feb 2015

14:00 - 14:30
L5

Choking of flow through a poroelastic material

Ian Sobey
(University of Oxford)
Abstract

Flow thought a porous media is usually described by assuming the superficial velocity can be expressed in terms of a constant permeability and a pressure gradient. In poroelastic flows the underlying elastic matrix responds to changes in the fluid pressure. When the elastic deformation is allowed to influence the permeability through the elastic strain, it becomes possible for increased fluid pressure gradient not to result in increased flow, but to decrease the permeability and potentially this may close off or choke the flow. I will talk about a simple model problem for a number of different elastic constitutive models and a number of different permeability-strain models and examine whether there is a general criterion that can be derived to show when, or indeed if, choking can occur for different elasticity-permeability combinations.

Tue, 10 Feb 2015

12:00 - 13:00
L5

The Geometry of Renormalization on Scalar Field Theories.

Susama Agarwala
(Oxford)
Abstract
In this talk, I develop the Hopf algebra of renormalization, as established by Connes and Kreimer. I then use the correspondence between commutative Hopf algebras and affine groups to show that the energy scale dependence of the renormalized theory can be expressed as a Maurer Cartan connection on the renormalization group.

Tue, 10 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 2)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Mon, 09 Feb 2015

17:00 - 18:00
L4

Global existence of solutions of the Ericksen-Leslie system for the Oseen-Frank model

Min-Chun Hong
(The University of Queensland)
Abstract

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Mon, 09 Feb 2015
15:45
C6

The symmetries of the free factor complex

Martin Bridson
(Oxford)
Abstract

I shall discuss joint work with Mladen Bestvina in which we prove that the group of simplicial automorphisms of the complex of free factors for a
free group $F$ is exactly $Aut(F)$, provided that $F$ has rank at least $3$. I shall begin by sketching the fruitful analogy between automorphism groups of free groups, mapping class groups, and arithmetic lattices, particularly $SL_n({\mathbb{Z}})$. In this analogy, the free factor complex, introduced by Hatcher and Vogtmann, appears as the natural analogue in the $Aut(F)$ setting of the spherical Tits building associated to $SL_n $ and of the curve complex associated to a mapping class group. If $n>2$, Tits' generalisation of the Fundamental Theorem of Projective Geometry (FTPG) assures us that the automorphism group of the building is $PGL_n({\mathbb{Q}})$. Ivanov proved an analogous theorem for the curve complex, and our theorem complements this. These theorems allow one to identify the abstract commensurators of $GL_n({\mathbb{Z}})$, mapping class groups, and $Out(F)$, as I shall explain.

Mon, 09 Feb 2015

15:45 - 16:45
Oxford-Man Institute

tba

tba
Abstract

tba

Mon, 09 Feb 2015

14:15 - 15:15
Oxford-Man Institute

The Renormalization Group as a tool of Rigorous Probability Theory

Ajay Chandra
(Warwick University)
Abstract

The Renormalization Group (RG) was pioneered by the physicist Kenneth Wilson in the early 70's and since then it has become a fundamental tool in physics. RG remains the most general philosophy for understanding how many models in statistical mechanics behave near their critical point but implementing RG analysis in a mathematically rigorous way remains quite challenging.

I will describe how analysis of RG flows translate into statements about continuum limits, universality, and cross-over phenomena - as a concrete example I will speak about some joint work with Abdelmalek Abdesselam and Gianluca Guadagni.

Mon, 09 Feb 2015
14:15
L5

Automorphism and isometry groups of Higgs bundle moduli spaces

David Baraglia
(Adelaide)
Abstract

The moduli space of Higgs bundles on a hyperbolic Riemann surface is a complex analytic variety which has a hyperkahler metric on its smooth locus. As such it has several associated symmetry groups including the group of complex analytic automorphisms and the group of isometries. I will discuss the classification of these and some other related groups.

Mon, 09 Feb 2015

12:00 - 13:00
L5

Generalised geometry for supergravity and flux vacua

Charles Strickland-Constable
(CEA/Saclay)
Abstract

Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.
 

Fri, 06 Feb 2015
13:00
L6

Path-dependent PDE and Backward SDE

Shige Peng
(Maths Institute University of Oxford)
Abstract

In this talk we present a new type of Soblev norm defined in the space of functions of continuous paths. Under the Wiener probability measure the corresponding norm is suitable to prove the existence and uniqueness for a large type of system of path dependent quasi-linear parabolic partial differential equations (PPDE). We have establish 1-1 correspondence between this new type of PPDE and the classical backward SDE (BSDE). For fully nonlinear PPDEs, the corresponding Sobolev norm is under a sublinear expectation called G-expectation, in the place of Wiener expectation. The canonical process becomes a new type of nonlinear Brownian motion called G-Brownian motion. A similar 1-1 correspondence has been established. We can then apply the recent results of existence, uniqueness and principle of comparison for BSDE driven by G-Brownian motion to obtain the same result for the PPDE.

Thu, 05 Feb 2015

17:30 - 18:30
L6

Triangulation of definable monotone families of compact sets

Nicolai Vorobjov
(University of Bath)
Abstract

Let $K\subset {\mathbb R}$ be a compact definable set in an o-minimal structure over $\mathbb R$, e.g. a semi-algebraic or a real analytic set. A definable family $\{S_\delta\ |  0<\delta\in{\mathbb R}\}$ of compact subsets of $K$, is called a monotone family if $S_\delta\subset S_\eta$ for all sufficiently small $\delta>\eta>0$. The main result in the talk is that when $\dim K=2$ or $\dim K=n=3$ there exists a definable triangulation of $K$ such that for each (open) simplex $\Lambda$ of the triangulation and each small enough $\delta>0$, the intersections $S_\delta\cap\Lambda$ is equivalent to one of five (respectively, nine) standard families in the standard simplex (the equivalence relation and a standard family will be formally defined). As a consequence, we prove the two-dimensional case of the topological conjecture on approximation of definable sets by compact families.

This is joint work with Andrei Gabrielov (Purdue).

Thu, 05 Feb 2015

16:00 - 17:00
C2

G-Higgs bundles, mirror symmetry and Langlands duality

Lucas Branco
(Oxford)
Abstract

The moduli space of G-Higgs bundles carries a natural Hyperkahler structure, through which we can study Lagrangian subspaces (A-branes) or holomorphic subspaces (B-branes) with respect to each structure. Notably, these A and B-branes have gained significant attention in string theory.

We shall begin the talk by first introducing G-Higgs bundles for reductive Lie groups and the associated Hitchin fibration, and sketching how to realize Langlands duality through spectral data. We shall then look at particular types of branes (BAA-branes) which correspond to very interesting geometric objects, hyperholomorphic bundles (BBB-branes). 

The presentation will be introductory and my goal is simply to sketch some of the ideas relating these very interesting areas. 

Thu, 05 Feb 2015

16:00 - 17:00
L5

L-functions as distributions

Andrew Booker
(University of Bristol)
Abstract

In 1989, Selberg defined what came to be known as the "Selberg class" of $L$-functions, giving rise to a new subfield of analytic number theory in the intervening quarter century. Despite its popularity, a few things have always bugged me about the definition of the Selberg class. I will discuss these nitpicks and describe some modest attempts at overcoming them, with new applications.

Thu, 05 Feb 2015
16:00
L1

Bridge Simulation and Estimation for Multivariate Stochastic Differential Equations

Michael Sørensen
(University of Copenhagen)
Abstract

New simple methods of simulating multivariate diffusion bridges, approximately and exactly, are presented. Diffusion bridge simulation plays a fundamental role in simulation-based likelihood inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes the one-dimensional bridge-simulation method proposed by Bladt and Sørensen (2014) to the multivariate setting. A method of simulating approximate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges. The new method is more generally applicable than previous methods because it does not require the existence of a Lamperti transformation, which rarely exists for multivariate diffusions. Another advantage is that the new method works well for diffusion bridges in long intervals because the computational complexity of the method is linear in the length of the interval. The usefulness of the new method is illustrated by an application to Bayesian estimation for the multivariate hyperbolic diffusion model.

 

The lecture is based on joint work presented in Bladt, Finch and Sørensen (2014).References:

Bladt, M. and Sørensen, M. (2014): Simple simulation of diffusion bridges with application to likelihood inference for diffusions. Bernoulli, 20, 645-675.

Bladt, M., Finch, S. and Sørensen, M. (2014): Simulation of multivariate diffusion bridges. arXiv:1405.7728, pp. 1-30.

Thu, 05 Feb 2015

16:00 - 17:00
L3

Stochastic Reaction-Diffusion Methods for Modeling Cellular Processes

Samuel Isaacson
(Boston University)
Abstract

Particle-based stochastic reaction diffusion methods have become a 
popular approach for studying the behavior of cellular processes in 
which both spatial transport and noise in the chemical reaction process 
can be important. While the corresponding deterministic, mean-field 
models given by reaction-diffusion PDEs are well-established, there are 
a plethora of different stochastic models that have been used to study 
biological systems, along with a wide variety of proposed numerical 
solution methods.

In this talk I will motivate our interest in such methods by first 
summarizing several applications we have studied, focusing on how the 
complicated ultrastructure within cells, as reconstructed from X-ray CT 
images, might influence the dynamics of cellular processes. I will then 
introduce our attempt to rectify the major drawback to one of the most 
popular particle-based stochastic reaction-diffusion models, the lattice 
reaction-diffusion master equation (RDME). We propose a modified version 
of the RDME that converges in the continuum limit that the lattice 
spacing approaches zero to an appropriate spatially-continuous model. 
Time-permitting, I will discuss several questions related to calibrating 
parameters in the underlying spatially-continuous model.

Thu, 05 Feb 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Rational Krylov Approximation of Matrix Functions and Applications

Dr Stefan Guettel
(Manchester University)
Abstract

Some problems in scientific computing, like the forward simulation of electromagnetic waves in geophysical prospecting, can be
solved via approximation of f(A)b, the action of a large matrix function f(A) onto a vector b. Iterative methods based on rational Krylov
spaces are powerful tools for these computations, and the choice of parameters in these methods is an active area of research.
We provide an overview of different approaches for obtaining optimal parameters, with an emphasis on the exponential and resolvent function, and the square root. We will discuss applications of the rational Arnoldi method for iteratively generating near-optimal absorbing boundary layers for indefinite Helmholtz problems, and for rational least squares vector fitting.

Thu, 05 Feb 2015

12:00 - 13:00
L6

The method of layer potentials in $L^p$ and endpoint spaces for elliptic operators with $L^\infty$ coefficients.

Andrew Morris
(Oxford University)
Abstract

We consider the layer potentials associated with operators $L=-\mathrm{div}A \nabla$ acting in the upper half-space $\mathbb{R}^{n+1}_+$, $n\geq 2$, where the coefficient matrix $A$ is complex, elliptic, bounded, measurable, and $t$-independent. A "Calder\'{o}n--Zygmund" theory is developed for the boundedness of the layer potentials under the assumption that solutions of the equation $Lu=0$ satisfy interior De Giorgi-Nash-Moser type estimates. In particular, we prove that $L^2$ estimates for the layer potentials imply sharp $L^p$ and endpoint space estimates. The method of layer potentials is then used to obtain solvability of boundary value problems. This is joint work with Steve Hofmann and Marius Mitrea.

Wed, 04 Feb 2015

16:00 - 17:00
C1

The h-cobordism theorem and its dimension 4 failure

Gareth Wilkes
(Oxford)
Abstract

This talk will give an almost complete proof of the h-cobordism theorem, paying special attention to the sources of the dimensional restrictions in the theorem. If time allows, the alterations needed to prove its cousin, the s-cobordism theorem, will also be sketched.

Wed, 04 Feb 2015
11:30
N3.12

A brief history of manifold classification

Gareth Wilkes
(Oxford University)
Abstract

Manifolds have been a central object of study for over a century, and the classification of them has been a core theme for the whole of this time. This talk will give an overview of the successes and failures in this effort, with some illustrative examples.

Tue, 03 Feb 2015

15:45 - 16:45
L4

Homological projective duality

Richard Thomas
(Imperial)
Abstract
I will describe a little of Kuznetsov's wonderful theory of Homological projective duality, a generalisation of classical projective duality that relates derived categories of coherent sheaves on different algebraic varieties. I will explain an approach that seems simpler than the original, and some applications that occur in joint work with Addington, Calabrese and Segal.
Tue, 03 Feb 2015

14:30 - 15:00
L5

Fast and well-conditioned spectral methods for D-finite functions

Thomas Gregoire
(Écoles normales supérieures de Lyon)
Abstract

D-finite functions are solutions of linear differential equations with polynomial coefficients.  They have drawn a lot of attention, both in Computer Algebra--because of their numerous (algorithmic) closure properties--but also in Numerical Analysis, because their defining ODEs can be numerically solved very efficiently.  In this talk, I will show how a mix of symbolic and numerical methods yields fast and well-conditioned spectral methods on various domains and using different bases of functions.

Tue, 03 Feb 2015
14:30
L6

Rigorous analysis of a randomised number field sieve

Jonathan Lee
(Cambridge University)
Abstract

The Number Field Sieve is the current practical and theoretical state of the art algorithm for factoring. Unfortunately, there has been no rigorous analysis of this type of algorithm. We randomise key aspects of the number theory, and prove that in this variant congruences of squares are formed in expected time $L(1/3, 2.88)$. These results are tightly coupled to recent progress on the distribution of smooth numbers, and we provide additional tools to turn progress on these problems into improved bounds.

Tue, 03 Feb 2015

14:00 - 14:30
L5

Rigorous computational proof of Hurwitz stability for a matrix by Lyapunov equation

Behnam Hashemi
(University of Oxford)
Abstract

It is well-known that a matrix $A$ is Hurwitz stable if and only if there exists a positive definite solution to the Lyapunov matrix equation $A X + X A^* = B$, where $B$ is Hermitian negative definite. We present a verified numerical algorithm to rigorously prove the stability of a given matrix $A$ in the presence of rounding errors.  The computational cost of the algorithm is cubic and it is fast since we can cast almost all operations in level 3 BLAS for which interval arithmetic can be implemented very efficiently.  This is a joint work with Andreas Frommer and the results are already published in ETNA in 2013.

Tue, 03 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 1)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Mon, 02 Feb 2015

17:00 - 18:00
L4

Unique Continuation, Carleman Estimates, and Blow-up for Nonlinear Wave Equations

Arick Shao
(Imperial College London)
Abstract

In this talk, we consider two disparate questions involving wave equations: (1) how singularities of solutions of subconformal focusing nonlinear wave equations form, and (2) when solutions of (linear and nonlinear) wave equations are determined by their data at infinity. In particular, we will show how tools from solving the second problem - a new family of global nonlinear Carleman estimates - can be used to establish some new results regarding the first question. Previous theorems by Merle and Zaag have established both upper and lower bounds on the local H¹-norm near noncharacteristic blow-up points for subconformal focusing NLW. In our main result, we show that this H¹-norm cannot concentrate along past timelike cones emanating from the blow-up point, i.e., that a significant amount of the action must occur near the corresponding past null cones.

These are joint works with Spyros Alexakis.

Mon, 02 Feb 2015
15:45
C6

Closed geodesics and string homology

John Jones
(Warwick)
Abstract

The  study of closed geodesics on a Riemannian manifold is a classical and important part of differential geometry. In 1969 Gromoll and Meyer used Morse - Bott theory to give a topological condition on the loop space of compact manifold M which ensures that any Riemannian metric on M has an infinite number of closed geodesics.  This makes a very close connection between closed geodesics and the topology of loop spaces.  

Nowadays it is known that there is a rich algebraic structure associated to the topology of loop spaces — this is the theory of string homology initiated by Chas and Sullivan in 1999.  In recent work, in collaboration with John McCleary, we have used the ideas of string homology to give new results on the existence of an infinite number of closed  geodesics. I will explain some of the key ideas in our approach to what has come to be known as the closed geodesics problem.

Mon, 02 Feb 2015

15:45 - 16:45
Oxford-Man Institute

Spectral volume and surface measures via the Dixmier trace for local symmetric Dirichlet spaces with Weyl type eigenvalue asymptotics

Naotaka Kajino
Abstract

Spectral volume and surface measures via the Dixmier trace for local symmetric Dirichlet spaces with Weyl type eigenvalue asymptotics

 

The purpose of this talk is to present the author's recent results of on an

operator theoretic way of looking atWeyl type Laplacian eigenvalue asymptotics

for local symmetric Dirichlet spaces.

For the Laplacian on a d-dimensional Riemannian manifoldM, Connes' trace

theorem implies that the linear functional  coincides with

(a constant multiple of) the integral with respect to the Riemannian volume

measure of M, which could be considered as an operator theoretic paraphrase

of Weyl's Laplacian eigenvalue asymptotics. Here  denotes a Dixmier trace,

which is a trace functional de_ned on a certain ideal of compact operators on

a Hilbert space and is meaningful e.g. for compact non-negative self-adjoint

operators whose n-th largest eigenvalue is comparable to 1/n.

The first main result of this talk is an extension of this fact in the framework

of a general regular symmetric Dirichlet space satisfying Weyl type asymptotics

for the trace of its associated heat semigroup, which was proved for Laplacians

on p.-c.f. self-simiar sets by Kigami and Lapidus in 2001 under a rather strong

assumption.

Moreover, as the second main result of this talk it is also shown that, given a

local regular symmetric Dirichlet space with a sub-Gaussian heat kernel upper

bound and a (sufficiently regular) closed subset S, a “spectral surface measure"

on S can be obtained through a similar linear functional involving the Lapla-

cian with Dirichlet boundary condition on S. In principle, corresponds to the

second order term for the eigenvalue asymptotics of this Dirichlet Laplacian, and

when the second order term is explicitly known it is possible to identify  For

example, in the case of the usual Laplacian on Rd and a Lipschitz hypersurface S,is a constant multiple of the usual surface measure on S.

Mon, 02 Feb 2015

14:15 - 15:15
Oxford-Man Institute

Maximal couplings and geometry

Sayan Banerjee
(Warwick University)
Abstract

Maximal couplings are couplings of Markov processes where the tail probabilities of the coupling time attain the total variation lower bound (Aldous bound) uniformly for all time. Markovian couplings are coupling strategies where neither process is allowed to look into the future of the other before making the next transition. These are easier to describe and play a fundamental role in many branches of probability and analysis. Hsu and Sturm proved that the reflection coupling of Brownian motion is the unique Markovian maximal coupling (MMC) of Brownian motions starting from two different points. Later, Kuwada proved that to have a MMC for Brownian motions on a Riemannian manifold, the manifold should have a reflection structure, and thus proved the first result connecting this purely probabilistic phenomenon (MMC) to the geometry of the underlying space.