16:00
16:00
15:30
Higher Order Lipschitz Functions in Data Science
Abstract
The notion of Lip(gamma) Functions, for a parameter gamma > 0, introduced by Stein in the 1970s (building on earlier work of Whitney) is a notion of smoothness that is well-defined on arbitrary closed subsets (including, in particular, finite subsets) that is instrumental in the area of Rough Path Theory initiated by Lyons and central in recent works of Fefferman. Lip(gamma) functions provide a higher order notion of Lipschitz regularity that is well-defined on arbitrary closed subsets, and interacts well with the more classical notion of smoothness on open subsets. In this talk we will survey the historical development of Lip(gamma) functions and illustrate some fundamental properties that make them an attractive class of function to work with from a machine learning perspective. In particular, models learnt within the class of Lip(gamma) functions are well-suited for both inference on new unseen input data, and for allowing cost-effective inference via the use of sparse approximations found via interpolation-based reduction techniques. Parts of this talk will be based upon the works https://arxiv.org/abs/2404.06849 and https://arxiv.org/abs/2406.03232.
15:30
Poincaré duality fibrations and Kontsevich's Lie graph complex
Abstract
I will talk about certain higher algebraic structure, governed by Kontsevich's Lie graph complex, that can be associated to an oriented fibration with Poincaré duality fiber. We construct a generalized fiber integration map associated to each Lie graph homology class and the main result is that this gives a faithful representation of graph homology. I will discuss how this leads to new possible interpretations of Lie graph homology classes as obstructions to, on one hand, smoothness of Poincaré duality fibrations, and, on the other hand, the existence of Poincaré duality algebra resolutions of the cochains of the total space as a dg module over the cochains of the base space.
14:15
On the Geometric Langlands Program
Abstract
I will discuss how some ideas from Geometric Langlands can be used to obtain new results in birational geometry and on the topology of algebraic varieties.
13:30
New sum rules for protected operators along RG flows and more!
Abstract
I will review recent progess on a topic of common interest to many
physicists https://www.arxiv.org/abs/2410.12043. Time permitting, I will
also comment about new sum rules for protected operators along RG flows:
https://arxiv.org/pdf/2409.09006.
How to Write a Good Maths Solution
Abstract
In this interactive workshop, we'll discuss what mathematicians are looking for in written solutions. How can you set out your ideas clearly, and what are the standard mathematical conventions? Please bring a pen or pencil!
This session is likely to be most relevant for first-year undergraduates, but all are welcome.
12:00
Twisted eleven-dimensional supergravity and exceptional simple infinite dimensional super-Lie algebras
Abstract
I will describe a holomorphic-topological field theory in eleven-dimensions which captures a 1/16-BPS subsector of eleven-dimensional supergravity. Remarkably, asymptotic symmetries of the theory on flat space and on twisted versions of the AdS_4 x S^7 and AdS_7 x S^4 backgrounds recover three of the five infinite dimensional exceptional simple super-Lie algebras. I will discuss some applications of this fact, including character formulae for indices counting multigravitons and the contours of a program to holographically describe 1/16-BPS local operators in the 6d (2,0) SCFTs of type A_{N-1}. This talk is based on joint work, much in progress, with Fabian Hahner, Ingmar Saberi, and Brian Williams.
Junior Algebra Social
Abstract
The Junior Algebra and Representation Theory Seminar will kick-off the start of the academic year with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.
Engineering Biology for Robust Turing Patterns
Abstract
Turing patterns have long been proposed as a mechanism for spatial organization in biology, but their relevance remains controversial due to the stringent fine-tuning often required. In this talk, I will present recent efforts to engineer synthetic Turing systems in bacterial colonies, highlighting both successes and limitations. While our three-node gene circuit generates patterns, challenges remain in extending these results to broader contexts. Additionally, I will discuss our exploration of machine learning methods to address the inverse problem of pattern formation, helping the design process down the road. This work addresses the ongoing task in translating theory into robust biological applications, offering insights into both current capabilities and future directions.
18:00
Backtesting with correlated data
Abstract
The important problem of backtesting financial models over long horizons inevitably leads to overlapping returns, giving rise to correlated samples. We propose a new method of dealing with this problem by decorrelation and show how this increases the discriminatory power of the resulting tests.
About the speaker
Nikolai Nowaczyk is a Risk Management & AI consultant who has advised multiple institutional clients in projects around counterparty credit risk and xVA as well as data science and machine learning.
Nikolai holds a PhD in mathematics from the University of Regensburg and has been an Academic Visitor at Imperial College London.
Registration for in-person attendance is required in advance.
17:00
Generic central sequence properties in II$_1$ factors
Abstract
Von Neumann algebras which are not matrix algebras, yet still possess a unique trace, form a basic class called II$_1$ factors. The set of asymptotically commuting elements (or, the relative commutant of the algebra within its own ultrapower), dubbed the central sequence algebra, can take many different forms. In this talk, we discuss an elementary class of II$_1$ factors whose central sequence algebra is again a II$_1$ factor. We show that the class of infinitely generic II$_1$ factors possess this property, and ask some related questions about properties of other existentially closed II$_1$ factors. This is based on joint work with Isaac Goldbring, David Jekel, and Srivatsav Kunnawalkam Elayavalli.
16:00
COW SEMINAR: Derived symmetries for crepant resolutions of hypersurfaces
Abstract
Given a singularity with a crepant resolution, a symmetry of the derived
category of coherent sheaves on the resolution may often be constructed
using the formalism of spherical functors. I will introduce this, and
new work (arXiv:2409.19555) on general constructions of such symmetries
for hypersurface singularities. This builds on previous results with
Segal, and is inspired by work of Bodzenta-Bondal.
16:00
Non-generic components of the Emerton-Gee stack for $\mathrm{GL}_{2}$
Abstract
Let $K$ be an unramified extension of $\mathbb{Q}_p$ for a prime $p > 3$. The reduced part of the Emerton-Gee stack for $\mathrm{GL}_{2}$ can be viewed as parameterizing two-dimensional mod $p$ Galois representations of the absolute Galois group of $K$. In this talk, we will consider the extremely non-generic irreducible components of this reduced part and see precisely which ones are smooth or normal, and which have Gorenstein normalizations. We will see that the normalizations of the irreducible components admit smooth-local covers by resolution-rational schemes. We will also determine the singular loci on the components, and use these results to update expectations about the conjectural categorical $p$-adic Langlands correspondence. This is based on recent joint work with Ben Savoie.
16:00
Roe type algebras and their isomorphisms
Abstract
Roe type algebras are operator algebras designed to catch the large-scale behaviour of metric spaces. This talk focuses on the following question: if two Roe type algebras associated to spaces (X,d_X) and (Y,d_Y) are isomorphic, how similar are X and Y? We provide positive results proved in the last 5 years, and, if time allows it, we show that sometimes answers to this question are subject to set theoretic considerations
14:30
COW SEMINAR: Homological mirror symmetry for K3 surfaces
Abstract
Joint work with Paul Hacking (U Mass Amherst). We first explain how to
prove homological mirror symmetry for a maximal normal crossing
Calabi-Yau surface Y with split mixed Hodge structure. This includes the
case when Y is a type III K3 surface, in which case this is used to
prove a conjecture of Lekili-Ueda. We then explain how to build on this
to prove an HMS statement for K3 surfaces. On the symplectic side, we
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be
accessible to audience members with a wide range of mirror symmetric
backgrounds.
Machine learning in solution of inverse problems: subjective perspective
Abstract
Following the 2012 breakthrough in deep learning for classification and visions problems, the last decade has seen tremendous raise of interest in machine learning in a wider mathematical research community from foundational research through field specific analysis to applications.
As data is at the core of any inverse problem, it was a natural direction for the field to investigate how machine learning could aid various aspects of inversion yielding numerous approaches from somewhat ad-hoc but very effective like learned unrolled methods to provably convergent learned regularisers with everything in between. In this talk I will review some on these developments through a lens of the research of our group.
13:30
Feynman Integrals and Hopf Algebras
Abstract
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
13:00
COW SEMINAR: Ball quotients and moduli spaces
Abstract
A number of moduli problems are, via Hodge theory, closely related to
ball quotients. In this situation there is often a choice of possible
compactifications such as the GIT compactification´and its Kirwan
blow-up or the Baily-Borel compactification and the toroidal
compactificatikon. The relationship between these compactifications is
subtle and often geometrically interesting. In this talk I will discuss
several cases, including cubic surfaces and threefolds and
Deligne-Mostow varieties. This discussion links several areas such as
birational geometry, moduli spaces of pointed curves, modular forms and
derived geometry. This talk is based on joint work with S.
Casalaina-Martin, S. Grushevsky, S. Kondo, R. Laza and Y. Maeda.
12:00
A splitting theorem for manifolds with a convex boundary component.
Abstract
The celebrated Splitting Theorem by Cheeger-Gromoll states that a manifold with non-negative Ricci curvature which contains a line is isometric to a product, where one of the factors is the real line. A related result was later proved by Kasue. He showed that a manifold with non-negative Ricci curvature and two mean convex boundary components, one of which is compact, is also isometric to a product. In this talk, I will present a variant of Kasue’s result based on joint work with Andrea Mondino. We consider manifolds with non-negative Ricci curvature and disconnected mean convex boundary. We show that if one boundary component is parabolic and convex, then the manifold is a product, where one of the factors is an interval of the real line. The result is an application of recently developed tools in synthetic geometry and exploits the interplay between Ricci curvature and optimal transport.
Multirevolution integrators for stochastic multiscale dynamics with fast stochastic oscillations
Abstract
We introduce a new methodology based on the multirevolution idea for constructing integrators for stochastic differential equations in the situation where the fast oscillations themselves are driven by a Stratonovich noise. Applications include in particular highly-oscillatory Kubo oscillators and spatial discretizations of the nonlinear Schrödinger equation with fast white noise dispersion. We construct a method of weak order two with computational cost and accuracy both independent of the stiffness of the oscillations. A geometric modification that conserves exactly quadratic invariants is also presented. If time allows, we will discuss ongoing work on uniformly accurate methods for such systems. This is a joint work with Gilles Vilmart.
Effective elasticity and dynamics of helical filaments under distributed loads
Abstract
Slender elastic filaments with intrinsic helical geometry are encountered in a wide range of physical and biological settings, ranging from coil springs in engineering to bacteria flagellar filaments. The equilibrium configurations of helical filaments under a variety of loading types have been well studied in the framework of the Kirchhoff rod equations. These equations are geometrically nonlinear and so can account for large, global displacements of the rod. This geometric nonlinearity also makes a mathematical analysis of the rod equations extremely difficult, so that much is still unknown about the dynamic behaviour of helical rods under external loading.
An important class of simplified models consists of 'equivalent-column' theories. These model the helical filament as a naturally-straight beam (aligned with the helix axis) for which the extensional and torsional deformations are coupled. Such theories have long been used in engineering to describe the free vibrations of helical coil springs, though their validity remains unclear, particularly when distributed forces and moments are present. In this talk, we show how such an effective theory can be derived systematically from the Kirchhoff rod equations using the method of multiple scales. Importantly, our analysis is asymptotically exact in the small-wavelength limit and can account for large, unsteady displacements. We then illustrate our theory with two loading scenarios: (i) a heavy helical rod deforming under its own weight; and (ii) axial rotation (twirling) in viscous fluid, which may be considered as a simple model for a bacteria flagellar filament. More broadly, our analysis provides a framework to develop reduced models of helical rods in a wide variety of physical and biological settings, as well as yielding analytical insight into their tensile instabilities.
16:00
Coherence in Dimension 2
Abstract
A group is coherent if all its finitely generated subgroups are finitely presented. Aside from some easy cases, it appears that coherence is a phenomenon that occurs only among groups of cohomological dimension 2. In this talk, we will give many examples of coherent and incoherent groups, discuss techniques to prove a group is coherent, and mention some open problems in the area.
Mathematrix x Mirzakhani: Women and Non-Binary People Coffee and Cake
Abstract
This is a joint event by the Mathematrix and Mirzakhani Societies for all women and non-binary people in the Maths department. Join us in the South Mezzanine for some hot drinks and sweet treats.
11:00
Weak coupling limit for polynomial stochastic Burgers equations in $2d$
Abstract
We explore the weak coupling limit for stochastic Burgers type equation in critical dimension, and show that it is given by a Gaussian stochastic heat equation, with renormalised coefficient depending only on the second order Hermite polynomial of the nonlinearity. We use the approach of Cannizzaro, Gubinelli and Toninelli (2024), who treat the case of quadratic nonlinearities, and we extend it to polynomial nonlinearities. In that sense, we extend the weak universality of the KPZ equation shown by Hairer and Quastel (2018) to the two dimensional generalized stochastic Burgers equation. A key new ingredient is the graph notation for the generator. This enables us to obtain uniform estimates for the generator. This is joint work with Nicolas Perkowski.