16:00
16:00
15:00
Goldbach beyond the square-root barrier
Abstract
We show the primes have level of distribution 66/107 using triply well-factorable weights. This gives the highest level of distribution for primes in any setting, improving on the prior record level 3/5 of Maynard. We also extend this level to 5/8, assuming Selberg's eigenvalue conjecture. As a result, we obtain new upper bounds for twin primes and for Goldbach representations of even numbers $a$. For the Goldbach problem, this is the first use of a level of distribution beyond the 'square-root barrier', and leads to the greatest improvement on the problem since Bombieri--Davenport from 1966.
14:00
Coulomb and Higgs Phases of G2 Manifolds
Abstract
We will discuss the physics of M-theory compactifications onto G2-orbifolds of the type that can be desingularised via the method of Joyce and Karigiannis i.e. orbifolds where one has a singular locus of A1 singularities that admits a nowhere-vanishing (Z2-twisted) harmonic 1-form. Interestingly, there are topologically distinct desingularisations of such orbifolds which we show can be physically interpreted as different branches of the 4d vacuum moduli space of the arising gauge theories: Coulomb and Higgs branches. The results suggest generalisations of the results of Joyce and Karigiannis to G2-orbifolds with more diverse ADE singularities and higher order twists. As a bonus, we also get an isomorphism between the moduli space of flat connections on flat compact 3-manifolds and the moduli space of Ricci flat metrics on the G2-orbifolds. We will briefly discuss this. Based on 2309.12869 and 2312.12311.
14:00
Algorithmic Insurance
Abstract
As machine learning algorithms get integrated into the decision-making process of companies and organizations, insurance products are being developed to protect their providers from liability risk. Algorithmic liability differs from human liability since it is based on data-driven models compared to multiple heterogeneous decision-makers and its performance is known a priori for a given set of data. Traditional actuarial tools for human liability do not consider these properties, primarily focusing on the distribution of historical claims. We propose, for the first time, a quantitative framework to estimate the risk exposure of insurance contracts for machine-driven liability, introducing the concept of algorithmic insurance. Our work provides ML model developers and insurance providers with a comprehensive risk evaluation approach for this new class of products. Thus, we set the foundations of a niche area of research at the intersection of the literature in operations, risk management, and actuarial science. Specifically, we present an optimization formulation to estimate the risk exposure of a binary classification model given a pre-defined range of premiums. Our approach outlines how properties of the model, such as discrimination performance, interpretability, and generalizability, can influence the insurance contract evaluation. To showcase a practical implementation of the proposed framework, we present a case study of medical malpractice in the context of breast cancer detection. Our analysis focuses on measuring the effect of the model parameters on the expected financial loss and identifying the aspects of algorithmic performance that predominantly affect the risk of the contract.
Paper Reference: Bertsimas, D. and Orfanoudaki, A., 2021. Pricing algorithmic insurance. arXiv preprint arXiv:2106.00839.
Paper link: https://arxiv.org/pdf/2106.00839.pdf
17:00
Logging the World - Oliver Johnson
During the pandemic, you may have seen graphs of data plotted on strange-looking (logarithmic) scales. Oliver will explain some of the basics and history of logarithms, and show why they are a natural tool to represent numbers ranging from COVID data to Instagram followers. In fact, we’ll see how logarithms can even help us understand information itself in a mathematical way.
Oliver Johnson is Professor of Information Theory in the School of Mathematics at the University of Bristol. His research involves randomness and uncertainty, and includes collaborations with engineers, biologists and computer scientists. During the pandemic he became a commentator on the daily COVID numbers, through his Twitter account and through appearances on Radio 4 and articles for the Spectator. He is the author of the book Numbercrunch (2023), which is designed to help a general audience understand the value of maths as a toolkit for making sense of the world.
Please email @email to register.
The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 06 March at 5-6pm and any time after (no need to register for the online version).
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

One-ended graph braid groups and where to find them
Abstract
Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.
Large-size Behavior of the Entanglement Entropy of Free Disordered Fermions
Abstract
We consider a macroscopic system of free lattice fermions, and we are interested in the entanglement entropy (EE) of a large block of size L of the system, treating the rest of the system as the macroscopic environment of the block. Entropy is a widely used quantifier of quantum correlations between a block and its surroundings. We begin with known results (mostly one-dimensional) on the asymptotics form of EE of translation-invariant systems for large L, where for any value of the Fermi energy there are basically two asymptotics known as area law and enhanced (violated ) area law. We then show that in the disordered case and for the Fermi energy belonging to the localized spectrum of a one-body Hamiltonian, the EE obeys the area law for all typical realizations of disorder and any dimension. As for the enhanced area law, it turns out to be possible for some special values of the Fermi energy in the one-dimensional case
15:00
Asymptotic mapping class groups of Cantor manifolds and their finiteness properties
Abstract
We introduce a new class of groups with Thompson-like group properties. In the surface case, the asymptotic mapping class group contains mapping class groups of finite type surfaces with boundary. In dimension three, it contains automorphism groups of all finite rank free groups. I will explain how asymptotic mapping class groups act on a CAT(0) cube complex which allows us to show that they are of type F_infinity.
This is joint work with Javier Aramayona, Kai-Uwe Bux, Jonas Flechsig and Xaolei Wu.
On the $(k+2,k)$-problem of Brown, Erdős and Sós
Abstract
Brown-Erdős-Sós initiated the study of the maximum number of edges in an $n$-vertex $r$-graph such that no $k$ edges span at most $s$ vertices. If $s=rk-2k+2$ then this function is quadratic in $n$ and its asymptotic was previously known for $k=2,3,4$. I will present joint work with Stefan Glock, Jaehoon Kim, Lyuben Lichev and Shumin Sun where we resolve the cases $k=5,6,7$.
Functional Calculus, Bornological Algebra, and Analytic Geometry
Abstract
Porta and Yue Yu's model of derived analytic geometry takes as its category of basic, or affine, objects the category opposite to simplicial algebras over the entire functional calculus Lawvere theory. This is analogous to Lurie's approach to derived algebraic geometry where the Lawvere theory is the one governing simplicial commutative rings, and Spivak's derived smooth geometry, using the Lawvere theory of C-infinity-rings. Although there have been numerous important applications including GAGA, base-change, and Riemann-Hilbert theorems, these methods are still missing some crucial ingredients. For example, they do not naturally beget a good definition of quasi-coherent sheaves satisfying descent. On the other hand, the Toen-Vezzosi-Deligne approach of geometry relative to a symmetric monoidal category naturally provides a definition of a category of quasi-coherent sheaves, and in two such approaches to analytic geometry using the categories of bornological and condensed abelian groups respectively, these categories do satisfy descent. In this talk I will explain how to compare the Porta and Yue Yu model of derived analytic geometry with the bornological one. More generally we give conditions on a Lawvere theory such that its simplicial algebras embed fully faithfully into commutative bornological algebras. Time permitting I will show how the Grothendieck topologies on both sides match up, allowing us to extend the embedding to stacks.
This is based on joint work with Oren Ben-Bassat and Kobi Kremnitzer, and follows work of Kremnitzer and Dennis Borisov.
12:30
Scattering amplitudes and Celestial Holography
Abstract
The S-Matrix in flat space is a naturally holographic observable. S-Matrix elements thus contain valuable information about the putative dual CFT. In this talk, I will first introduce some basic aspects of Celestial Holography and then explain how these can be inferred directly from scattering amplitudes. I will then focus on how the singularity structure of amplitudes interplays with traditional CFT structures particularly in the context of the operator product expansion (OPE) of the dual CFT. I will conclude with some discussion about the role played by supersymmetry in simplifying the putative dual CFT.
OxPDE-WCMB seminar - From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.
Abstract
First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities. Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles.
OxPDE-WCMB seminar - From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.
Abstract
First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities. Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles.
16:00
Higher descent on elliptic curves
Abstract
Let $E$ be an elliptic curve over a number field $K$ and $n \geq 2$ an integer. We recall that elements of the $n$-Selmer group of $E/K$ can be explicitly written in terms of certain equations for $n$-coverings of $E/K$. Writing the elements in this way is called conducting an explicit $n$-descent. One of the applications of explicit $n$-descent is in finding generators of large height for $E(K)$ and from this point of view one would like to be able to take $n$ as large as possible. General algorithms for explicit $n$-descent exist but become computationally challenging already for $n \geq 5$. In this talk we discuss combining $n$- and $(n+1)$-descents to $n(n+1)$-descent and the role that invariant theory plays in this procedure.
15:30
A filtration of handlebody Teichmüller space
Abstract
The handlebody group is defined to be the mapping class group of a handelbody (rel. boundary). It is a subgroup of the mapping class group of the surface of the handlebody, and maps onto the outer automorphism group of its fundamental group (the free group of rank equal to its genus).
Recently Hainaut and Petersen described a subspace of moduli space forming an orbifold classifying space for the handlebody group, and combined this with work of Chan-Galatius-Payne to construct cohomology classes in the group. I will talk about how one can build on their ideas to define a cocompact EG for the handlebody group inside Teichmüller space. This is a manifold with boundary and comes with a filtration by labelled disk systems which we call the `RGB (red-green-blue) disk complex.' I will describe this filtration, use it to describe the boundary of the manifold, and speculate about potential applications to duality results. Based on work-in-progress with Dan Petersen.
15:30
Regularity of Random Wavelet Series
Abstract
This presentation focuses on the study of the regulartiy of random wavelet series. We first study their belonging to certain functional spaces and we compare these results with long-established results related to random Fourier series. Next, we show how the study of random wavelet series leads to precise pointwise regularity properties of processes like fractional Brownian motion. Additionally, we explore how these series helps create Gaussian processes with random Hölder exponents.
14:15
Palais-Smale sequences for the prescribed Ricci curvature functional
Abstract
On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with the critical points of the scalar curvature functional subject to a constraint. We provide a complete description of Palais--Smale sequences for this functional. As an application, we obtain new existence results for the prescribed Ricci curvature equation, which enables us to observe previously unseen phenomena. Joint work with Wolfgang Ziller (University of Pennsylvania).
Do Stochastic, Feel Noiseless: Stable Optimization via a Double Momentum Mechanism
Abstract
The tremendous success of the Machine Learning paradigm heavily relies on the development of powerful optimization methods, and the canonical algorithm for training learning models is SGD (Stochastic Gradient Descent). Nevertheless, the latter is quite different from Gradient Descent (GD) which is its noiseless counterpart. Concretely, SGD requires a careful choice of the learning rate, which relies on the properties of the noise as well as the quality of initialization.
It further requires the use of a test set to estimate the generalization error throughout its run. In this talk, we will present a new SGD variant that obtains the same optimal rates as SGD, while using noiseless machinery as in GD. Concretely, it enables to use the same fixed learning rate as GD and does not require to employ a test/validation set. Curiously, our results rely on a novel gradient estimate that combines two recent mechanisms which are related to the notion of momentum.
Finally, as much as time permits, I will discuss several applications where our method can be extended.
14:00
16:00
Creating Impact for Maths Research via Consulting, Licensing and Spinouts
Abstract
Oxford University Innovation, the University’s commercialisation team, will explain the support they can give to Maths researchers who want to generate commercial impact from their work and expertise. In addition to an overview of consulting, this talk will explain how mathematical techniques and software can be protected and commercialised.
A (higher) categorical approach to analytic D-modules
Abstract
In this possibly speculative talk I will try to outline a way to define analytic D-modules, using (higher) category theory and the ``six operations" on quasicoherent sheaves as the main tools. The aim is to follow the successful approach of Andy Jiang in the algebraic setting, who obtained such a theory without using stacks or formal schemes (as in Gaitsgory-Rozenblyum's approach). By using local cohomology, Jiang was able to avoid enlarging the category of algebras beyond the usual ones. We believe that an analytic variant of local cohomology can be used to recover the Ardakov-Wadsley theory of D-cap modules ``on the nose". (Work in progress).
16:00
Inhomogeneous Kaufman measures and diophantine approximation
Abstract
Kaufman constructed a family of Fourier-decaying measures on the set of badly approximable numbers. Pollington and Velani used these to show that Littlewood’s conjecture holds for a full-dimensional set of pairs of badly approximable numbers. We construct analogous measures that have implications for inhomogeneous diophantine approximation. In joint work with Agamemnon Zafeiropoulos and Evgeniy Zorin, our idea is to shift the continued fraction and Ostrowski expansions simultaneously.
14:00
Machine Learning in HEP-TH
Abstract
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
14:00
From Chebfun3 to RTSMS: A journey into deterministic and randomized Tucker decompositions
Abstract
In this talk we will first focus on the continuous framework and revisit how Tucker decomposition forms the foundation of Chebfun3 for numerical computing with 3D functions and the deterministic algorithm behind Chebfun3. The key insight is that separation of variables achieved via low-rank Tucker decomposition simplifies and speeds up lots of subsequent computations.
We will then switch to the discrete framework and discuss a new algorithm called RTSMS (randomized Tucker with single-mode sketching). The single-mode sketching aspect of RTSMS allows utilizing simple sketch matrices which are substantially smaller than alternative methods leading to considerable performance gains. Within its least-squares strategy, RTSMS incorporates leverage scores for efficiency with Tikhonov regularization and iterative refinement for stability. RTSMS is demonstrated to be competitive with existing methods, sometimes outperforming them by a large margin.
Ocean dynamics on the margin of rotational control
Professor Taylor's research focuses on the fluid dynamics of the ocean. He is particularly interested in ocean turbulence and mixing, ocean fronts and the surface boundary layer, and the impact of turbulence on micro-organisms. Recent work has uncovered a fascinating and poorly-understood collection of processes occurring at relatively small scales (<O(10km)) where the vertical motion is strong but stratification and the Earth's rotation are important factors. Since these motions are too small to be directly resolved by global ocean and climate models, understanding their impact on the structure and dynamics of the ocean is one of the most pressing topics in physical oceanography. Currently, he is studying the dynamics of upper ocean fronts, the turbulent boundary layer beneath melting ice shelves, stratified turbulence, and the influence of physical processes on biogeochemical dynamics. Please see his homepage here for more information. https://www.damtp.cam.ac.uk/person/jrt51
Abstract
Global scale ocean currents are strongly constrained by the Earth’s rotation, while this effect is generally negligible at small scales. In between, motions with scales from 1-10km are marginally affected by the Earth’s rotation. These intermediate scales, collectively termed the ocean submesoscale, have been hidden from view until recent years. Evidence from field measurements, numerical models, and satellite data have shown that submesoscales play a particularly important role in the upper ocean where they help to control the transport of material between the ocean surface and interior. In this talk I will review some recent work on submesoscale dynamics and their influence on biogeochemistry and accumulation of microplastics in the surface waters.
Model companions of fields with no points in hyperbolic varieties
Abstract
This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.
Relationships between hyperbolic and classic knot invatiants
Abstract
For a hyperbolic knot there are two types of invariants, the hyperbolic invariants coming from the geometric structure and the classical invariants coming from the topology or combinatorics. It has been observed in many different cases that these seemingly different types of invariants are in fact related. I will give examples of these relationships and discuss in particular a link by Stoimenow between the determinant and volume.
12:00
Pressure jump in the Cahn-Hilliard equation
Abstract
We model a tumor as an incompressible flow considering two antagonistic effects: repulsion of cells when the tumor grows (they push each other when they divide) and cell-cell adhesion which creates surface tension. To take into account these two effects, we use a 4th-order parabolic equation: the Cahn-Hilliard equation. The combination of these two effects creates a discontinuity at the boundary of the tumor that we call the pressure jump. To compute this pressure jump, we include an external force and consider stationary radial solutions of the Cahn-Hilliard equation. We also characterize completely the stationary solutions in the incompressible case, prove the incompressible limit and prove convergence of the parabolic problems to stationary states.
Non-constant ground configurations in the disordered ferromagnet and minimal cuts in a random environment.
Abstract
Quasidiagonal group actions and C^*-lifting problems
Abstract
I will give an introduction to quasidiagonality of group actions wherein an action on a C^*-algebra is approximated by actions on matrix algebras. This has implications for crossed product C^*-algebras, especially as pertains to finite dimensional approximation. I'll sketch the proof that all isometric actions are quasidiagonal, which we can view as a dynamical Petr-Weyl theorem. Then I will discuss an interplay between quasidiagonal actions and semiprojectivity of C^*-algebras, a property that allows "almost representations" to be perturbed to honest ones.
15:00
On the abelianization of the level 2 congruence group of the mapping class group.
Abstract
We will survey work of Birman-Craggs, Johnson, and Sato on the abelianization of the level 2 congruence group of the mapping class group of a surface, and of the corresponding Torelli group. We will then describe recent work of Lewis providing a common framework for both abelianizations, with applications including a partial answer to a question of Johnson.
Computing $H^2$-conforming finite element approximations without having to implement $C^1$-elements
Abstract
Fourth-order elliptic problems arise in a variety of applications from thin plates to phase separation to liquid crystals. A conforming Galerkin discretization requires a finite dimensional subspace of $H^2$, which in turn means that conforming finite element subspaces are $C^1$-continuous. In contrast to standard $H^1$-conforming $C^0$ elements, $C^1$ elements, particularly those of high order, are less understood from a theoretical perspective and are not implemented in many existing finite element codes. In this talk, we address the implementation of the elements. In particular, we present algorithms that compute $C^1$ finite element approximations to fourth-order elliptic problems and which only require elements with at most $C^0$-continuity. We also discuss solvers for the resulting subproblems and illustrate the method on a number of representative test problems.
Typical Ramsey properties of the primes and abelian groups
Abstract
Given a matrix $A$ with integer entries, a subset $S$ of an abelian group and $r\in\mathbb N$, we say that $S$ is $(A,r)$-Rado if any $r$-colouring of $S$ yields a monochromatic solution to the system of equations $Ax=0$. A classical result of Rado characterises all those matrices $A$ such that $\mathbb N$ is $(A,r)$-Rado for all $r \in \mathbb N$. Rödl and Ruciński, and Friedgut, Rödl and Schacht proved a random version of Rado’s theorem where one considers a random subset of $[n]:=\{1,\dots,n\}$.
In this paper, we investigate the analogous random Ramsey problem in the more general setting of abelian groups. Given a sequence $(S_n)_{n\in\mathbb N}$ of finite subsets of abelian groups, let $S_{n,p}$ be a random subset of $S_n$ obtained by including each element of $S_n$ independently with probability $p$. We are interested in determining the probability threshold for $S_{n,p}$ being $(A,r)$-Rado.
Our main result is a general black box for hypergraphs which we use to tackle problems of this type. Using this tool in conjunction with a series of supersaturation results, we determine the probability threshold for a number of different cases. A consequence of the Green-Tao theorem is the van der Waerden theorem for the primes: every finite colouring of the primes contains arbitrarily long monochromatic arithmetic progressions. Using our machinery, we obtain a random version of this result. We also prove a novel supersaturation result for $[n]^d$ and use it to prove an integer lattice generalisation of the random version of Rado's theorem.
This is joint work with Andrea Freschi and Andrew Treglown (both University of Birmingham).
Fast High-Order Finite Element Solvers on Simplices
Abstract
We present new high-order finite elements discretizing the $L^2$ de Rham complex on triangular and tetrahedral meshes. The finite elements discretize the same spaces as usual, but with different basis functions. They allow for fast linear solvers based on static condensation and space decomposition methods.
The new elements build upon the definition of degrees of freedom given by (Demkowicz et al., De Rham diagram for $hp$ finite element spaces. Comput.~Math.~Appl., 39(7-8):29--38, 2000.), and consist of integral moments on a symmetric reference simplex with respect to a numerically computed polynomial basis that is orthogonal in both the $L^2$- and $H(\mathrm{d})$-inner products ($\mathrm{d} \in \{\mathrm{grad}, \mathrm{curl}, \mathrm{div}\}$).
On the reference symmetric simplex, the resulting stiffness matrix has diagonal interior block, and does not couple together the interior and interface degrees of freedom. Thus, on the reference simplex, the Schur complement resulting from elimination of interior degrees of freedom is simply the interface block itself.
This sparsity is not preserved on arbitrary cells mapped from the reference cell. Nevertheless, the interior-interface coupling is weak because it is only induced by the geometric transformation. We devise a preconditioning strategy by neglecting the interior-interface coupling. We precondition the interface Schur complement with the interface block, and simply apply point-Jacobi to precondition the interior block.
The combination of this approach with a space decomposition method on small subdomains constructed around vertices, edges, and faces allows us to efficiently solve the canonical Riesz maps in $H^1$, $H(\mathrm{curl})$, and $H(\mathrm{div})$, at very high order. We empirically demonstrate iteration counts that are robust with respect to the polynomial degree.
12:30
Will (near-term) quantum computers deliver real advantage?
Abstract
I will then explain that hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will explain some of our recent results as hybrid quantum algorithms that exploit so-called classical shadows (random unitary protocols) in order to extract and post-process a large amount of information from the quantum computer [PRX 12, 041022 (2022)] and [arXiv:2212.11036]. I will finally identify the most likely areas where quantum computers may deliver a true advantage in the near term.
Characterising rectifiable metric spaces using tangent spaces
Abstract
This talk will present a new characterisation of rectifiable subsets of a complete metric space in terms of local approximation, with respect to the Gromov-Hausdorff distance, by finite dimensional Banach spaces. Time permitting, we will discuss recent joint work with Hyde and Schul that provides quantitative analogues of this statement.
15:30
Bicommutant categories
Abstract
Bicommutant categories, initially invented for the purposes of Chern-Simons theory and 2d CFT, seem to also appear in other domains of math with examples related to group theory, and dynamical systems.
15:30
Stochastic Games of Intensity Control for (Ticket) Pricing
Abstract
One way to capture both the elastic and stochastic reaction of purchases to price is through a model where sellers control the intensity of a counting process, representing the number of sales thus far. The intensity describes the probabilistic likelihood of a sale, and is a decreasing function of the price a seller sets. A classical model for ticket pricing, which assumes a single seller and infinite time horizon, is by Gallego and van Ryzin (1994) and it has been widely utilized by airlines, for instance. Extending to more realistic settings where there are multiple sellers, with finite inventories, in competition over a finite time horizon is more complicated both mathematically and computationally. We discuss some dynamic games of this type, from static to two player to the associated mean field game, with some numerical and existence-uniqueness results.
Based on works with Andrew Ledvina and with Emre Parmaksiz.
14:15
Infinite-time Singularities of Lagrangian Mean Curvature Flow
Abstract
Exploiting Symmetries for Learning in Deep Weight Spaces
Abstract
Learning to process and analyze the raw weight matrices of neural networks is an emerging research area with intriguing potential applications like editing and analyzing Implicit Neural Representations (INRs), weight pruning/quantization, and function editing. However, weight spaces have inherent permutation symmetries – permutations can be applied to the weights of an architecture, yielding new weights that represent the same function. As with other data types like graphs and point clouds, these symmetries make learning in weight spaces challenging.
This talk will overview recent advances in designing architectures that can effectively operate on weight spaces while respecting their underlying symmetries. First, we will discuss our ICML 2023 paper which introduces novel equivariant architectures for learning on multilayer perceptron weight spaces. We first characterize all linear equivariant layers for their symmetries and then construct networks composed of these layers. We then turn to our ICLR 2024 work, which generalizes the approach to diverse network architectures using what we term Graph Metanetworks (GMN). This is done by representing input networks as graphs and processing them with graph neural networks. We show the resulting metanetworks are expressive and equivariant to weight space symmetries of the architecture being processed. Our graph metanetworks are applicable to CNNs, attention layers, normalization layers, and more. Together, these works make promising steps toward versatile and principled architectures for weight-space learning.
16:00
Graduate Jobs in finance and the recruitment process
Abstract
Join us for a session with Keith Macksoud, Executive Director at global recruitment consultant Options Group in London and who previously has > 20 years’ experience in Prime Brokerage Sales at Morgan Stanley, Citi, and Deutsche Bank. Keith will discuss the recruitment process for financial institutions, and how to increase your chances of a successful application.
Keith will detail his finance background in Prime Brokerage and provide students with an exclusive look behind the scenes of executive search and strategic consulting firm Options Group. We will look at what Options Group does, how executive search firms work and the Firm’s 30-year track record of placing individuals at many of the industries’ largest and most successful global investment banks, investment managers and other financial services-related organisations.
About Options Group
Options Group is a leading global executive search and strategic consulting firm specializing in financial services including capital markets, global markets, alternative investments, hedge funds, and private banking/wealth management.
Algebraic and Geometric Models for Space Communications
Justin Curry is a tenured Associate Professor in the Department of Mathematics and Statistics at the University at Albany SUNY.
His research is primarily in the development of theoretical foundations for Topological Data Analysis via sheaf theory and category theory.
Abstract
In this talk I will describe a new model for time-varying graphs (TVGs) based on persistent topology and cosheaves. In its simplest form, this model presents TVGs as matrices with entries in the semi-ring of subsets of time; applying the classic Kleene star construction yields novel summary statistics for space networks (such as STARLINK) called "lifetime curves." In its more complex form, this model leads to a natural featurization and discrimination of certain Earth-Moon-Mars communication scenarios using zig-zag persistent homology. Finally, and if time allows, I will describe recent work with David Spivak and NASA, which provides a complete description of delay tolerant networking (DTN) in terms of an enriched double category.
Quantifying clonal selection and drift from a single bulk tissue sample
Abstract
Malignant transformation of somatic tissues is an evolutionary process, driven by selection for oncogenic mutations. Understanding when these mutations occur, and how fast mutant cell clones expand can improve diagnostic schemes and therapeutic intervention. However, clonal dynamics are not directly accessible in humans, posing a need for inference approaches to reconstruct the division history in normal and malignant cell clones, and to predict their future evolution. Inspired from population genetics theory, we develop mathematical models to detect imprints of clonal selection in the variant allele frequency distribution measured in a single tissue sample of a homeostatic tissue. I will present the theoretical basis of our approach and inference results for the tissue dynamics in physiological and clonal hematopoiesis, obtained from variant allele frequencies measured by snapshot bulk whole genome sequencing of human bone marrow samples.
Standard Majorana representations of 3-transposition groups
Abstract
The Monster group M is the largest sporadic simple group. It is also the group of automorphisms of 196, 884-dimensional Fischer-Norton-Griess algebra V_M. In 2009, A. A. Ivanov offered an axiomatic approach to studying the structure of V_M by introducing the notions of Majorana algebra and Majorana representation. Later, the theory developed, and Majorana representations of several groups were constructed. Our talk is dedicated to the existence of standard Majorana representations of 3-transposition groups for the Fischer list. The main result is that the groups from the Fischer list which admit a standard Majorana representation can be embedded into the Monster group.
The independence theorem in positive NSOP1 theories
Abstract
Positive logic is a generalisation of full first-order logic, where negation is not built in, but can be added as desired. In joint work with Jan Dobrowolski we succesfully generalised the recent development on Kim-independence in NSOP1 theories to the positive setting. One of the important theorems in this development is the independence theorem, whose statement is very similar to the well-known statement for simple theories, and allows us to amalgamate independent types. In this talk we will have a closer look at the proof of this theorem, and what needs to be changed to make the proof work in positive logic compared to full first-order logic.
16:00
Some mathematical results on generative diffusion models
Join us for refreshments from 330 outside L3.
Abstract
Diffusion models, which transform noise into new data instances by reversing a Markov diffusion process, have become a cornerstone in modern generative models. A key component of these models is to learn the score function through score matching. While the practical power of diffusion models has now been widely recognized, the theoretical developments remain far from mature. Notably, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. In this talk, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models and the accuracy of score estimation. Our analysis covers both the optimization and the generalization aspects of the learning procedure, which also builds a novel connection to supervised learning and neural tangent kernels.
This is based on joint work with Yinbin Han and Meisam Razaviyayn (USC).
16:00
Tame Triple Product Periods
Abstract
A recent conjecture proposed by Harris and Venkatesh relates the action of derived Hecke operators on the space of weight one modular forms to certain Stark units. In this talk, I will explain how this can be rephrased as a conjecture about "tame" analogues of triple product periods for a triple of mod p eigenforms of weights (2,1,1). I will then present an elliptic counterpart to this conjecture relating a tame triple product period to a regulator for global points of elliptic curves in rank 2. This conjecture can be proved in some special cases for CM weight 1 forms, with techniques resonating with the so-called Jochnowitz congruences. This is joint work in preparation with Henri Darmon.