Thu, 04 Aug 2022
15:00
S2.27

K-theoretic classification of inductive limit actions of fusion categories on AF-algebras

Roberto Hernandez Palomares
(Texas A&M University)
Abstract

I will introduce a K-theoretic complete invariant of inductive limits of finite dimensional actions of fusion categories on unital AF-algebras. This framework encompasses all such actions by finite groups on AF-algebras. Our classification result essentially follows from applying Elliott's Intertwining Argument adapted to this equivariant context, combined with tensor categorical techniques.

Our invariant roughly consists of a finite list of pre-ordered abelian groups and positive homomorphisms, which can be computed in principle. Under certain conditions this can be done in full detail. For example, using our classification theorem, we can show torsion-free fusion categories admit a unique AF-action on certain AF-algebras.

Connecting with subfactors, inspired by Popa’s classification of finite-depth hyperfinite subfactors by their standard invariant, we study unital inclusions of AF-algebras with trivial centers, as natural analogues of hyperfinite II_1 subfactors. We introduce the notion of strongly AF-inclusions and an Extended Standard Invariant, which characterizes them up to equivalence.

Thu, 07 Jul 2022
12:00
C2

Resonances and unitarity from celestial amplitude

Dr Jinxiang Wu
(Oxford University)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

We study the celestial description of the O(N) sigma model in the large N limit. Focusing on three dimensions, we analyze the implications of a UV complete, all-loop order 4-point amplitude of pions in terms of correlation functions defined on the celestial circle. We find these retain many key features from the previously studied tree-level case, such as their relation to Generalized Free Field theories and crossing-symmetry, but also incorporate new properties such as IR/UV softness and S-matrix metastable states. In particular, to understand unitarity, we propose a form of the optical theorem that controls the imaginary part of the correlator based solely on the presence of these resonances. We also explicitly analyze the conformal block expansions and factorization of four-point functions into three-point functions. We find that summing over resonances is key for these factorization properties to hold. This is a joint work with D. García-Sepúlveda, A. Guevara, J. Kulp.

Wed, 06 Jul 2022
12:00
C2

Pushing Forward Rational Differential Forms

Robert Moermann
(University of Hertfordshire)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

The scattering equations connect two modern descriptions of scattering amplitudes: the CHY formalism and the framework of positive geometries. For theories in the CHY family whose S-matrix is captured by some positive geometry in the kinematic space, the corresponding canonical form can be obtained as the pushforward via the scattering equations of the canonical form of a positive geometry in the CHY moduli space. In this talk, I consider the general problem of pushing forward rational differential forms via the scattering equations. I will present some recent results (2206.14196) for achieving this without ever needing to explicitly solve any scattering equations. These results use techniques from computational algebraic geometry, and they extend the application of similar results for rational functions to rational differential forms.

Wed, 29 Jun 2022

16:00 - 17:00

Information theory with kernel methods

Francis Bach
(INRIA - Ecole Normale Supérieure)
Further Information
Abstract

I will consider the analysis of probability distributions through their associated covariance operators from reproducing kernel Hilbert spaces. In this talk, I will show that the von Neumann entropy and relative entropy of these operators are intimately related to the usual notions of Shannon entropy and relative entropy, and share many of their properties. They come together with efficient estimation algorithms from various oracles on the probability distributions. I will also present how these new notions of relative entropy lead to new upper-bounds on log partition functions, that can be used together with convex optimization within variational inference methods, providing a new family of probabilistic inference methods (based on https://arxiv.org/pdf/2202.08545.pdf, see also https://francisbach.com/information-theory-with-kernel-methods/).

Tue, 28 Jun 2022

14:00 - 15:00
C3

The temporal rich club phenomenon

Nicola Pedreschi
(Mathematical Institute (University of Oxford))
Abstract

Identifying the hidden organizational principles and relevant structures of complex networks is fundamental to understand their properties. To this end, uncovering the structures involving the prominent nodes in a network is an effective approach. In temporal networks, the simultaneity of connections is crucial for temporally stable structures to arise. In this work, we propose a measure to quantitatively investigate the tendency of well-connected nodes to form simultaneous and stable structures in a temporal network. We refer to this tendency as the temporal rich club phenomenon, characterized by a coefficient defined as the maximal value of the density of links between nodes with a minimal required degree, which remain stable for a certain duration. We illustrate the use of this concept by analysing diverse data sets and their temporal properties, from the role of cohesive structures in relation to processes unfolding on top of the network to the study of specific moments of interest in the evolution of the network.

Article link: https://www.nature.com/articles/s41567-022-01634-8

Mon, 27 Jun 2022
16:15
St Catherine's

The Reddick Lecture 2022: The Benefits of Applied Mathematics in Product Development

Dr Uwe Beuscher, W.L. Gore & Associates, Inc.
Further Information

For more information, and to register your interest, please visit the Reddick Lecture web page

Abstract

Throughout a product development project, many decisions must be made. These include whether to start, stop, continue, or re-direct a project based on the learnings of the project team. Some of these decisions are related to the risk of achieving certain product performance attributes and they are often based on experimental observations in the laboratory or in field applications of early prototypes. Sometimes, these observations provide sufficient insight but often a significant uncertainty remains. Mathematical simulation can provide deeper insight into the mechanisms, may indicate limiting parameters and transport steps, and allows exploration of novel prototypes without actually making them. This talk will illustrate how Mathematics have been used to inform project development projects and their guiding decisions at WL Gore by describing examples from three very different applications.

Mon, 27 Jun 2022

12:45 - 13:45
L3

Marginal quenches and drives in Tomonaga-Luttinger liquids/free boson CFTs

Apoorv Tivari
(Stockholm)
Abstract

I will discuss the free compact boson CFT thrown out of equilibrium by marginal deformations, modeled by quenching or periodically driving the compactification radius of the free boson between two different values. All the dynamics will be shown to be crucially dependent on the ratio of the compactification radii via the Zamolodchikov distance in the space of marginal deformations. I will present various exact analytic results for the Loschmidt echo and the time evolution of energy density for both the quench and the periodic drive. Finally, I will present a non-perturbative computation of the  Rényi divergence, an information-theoretic distance measure, between two marginally deformed thermal density matrices.

 

The talk will be based on the recent preprint: arXiv:2206.11287

Mon, 27 Jun 2022 09:00 -
Fri, 22 Jul 2022 17:00
Mathematical Institute, Ground and Mezzanine levels

All we ever wanted was everything / 24.02.22 (for Ukraine)

Andy Bullock
Further Information

On June 27th, in the Reception area of the Mathematical Institute, Oxford artist Andy Bullock unveiled his most ambitious knot sculpture to date, a large floor-based work titled ‘All we ever wanted was everything / 24.02.22 (for Ukraine)’ constructed using 70 metres of metal trunking. As with all his knot sculptures they often reference issues of complexity with situations and people, the personal and interpersonal; focusing on what it means to be human.

In a first for the artist, Bullock will be inviting members of the recently arrived Ukrainian refugee community to contribute to the artwork by incorporating items of personal relevance. Bullock is reaching out to Oxfordshire’s Ukrainian community in a collaboration with Yulia Astasheva, a recent arrival herself from the Dnipropetrovsk region, where she still has close family living only miles from the Russian-occupied region.

The idea for the work came initially from a commission from Oxford Mathematics for Bullock to create an exhibition of his maths-related painting, photography and sculpture to be open to the public this summer. The core of his fine art master’s degree show last year was a creative examination and exploration of the topological subject of knot theory, and in particular the work of Clifford Hugh Dowker (1912-82) an eminent mathematician whose work is still studied today. “I find a poetic beauty in the mathematics I researched even though my understanding of the subject is virtually nil” said Bullock. “My final dissertation for my master’s degree examined the similarities in thought of mathematicians working in these areas and that of artists working in a more conceptual arena”.

In the lower ground floor space of the building there is an exhibition of some of Andy Bullock’s ‘knot variation’ paintings and photographs and a display of original handwritten manuscripts from Dowker’s personal archive alongside Andy's own sketchbooks, allowing an insight into the respective processes of mathematician and artist.

For further information:

Andy Bullock - @email - 07582 526957 - www.bullockstudio.com

Yulia Astasheva - @email

Tue, 21 Jun 2022

16:30 - 17:30
C1

Amenable actions and purely infinite crossed products

Julian Kranz
(University of Münster)
Abstract

Since the completion of the Elliott classification programme it is an important question to ask which C*-algebras satisfy the assumptions of the classification theorem. We will ask this question for the case of crossed-product C*-algebras associated to actions of nonamenable groups and focus on two extreme cases: Actions on commutative C*-algebras and actions on simple C*-algebras. It turns out that for a large class of nonamenable groups, classifiability of the crossed product is automatic under the minimal assumptions on the action. This is joint work with E. Gardella, S. Geffen, P. Naryshkin and A. Vaccaro. 

Tue, 21 Jun 2022

14:00 - 15:00
C6

Sequential Motifs in Observed Walks

Timothy LaRock
(Mathematical Institute (University of Oxford))
Abstract

The structure of complex networks can be characterized by counting and analyzing network motifs, which are small graph structures that occur repeatedly in a network, such as triangles or chains. Recent work has generalized motifs to temporal and dynamic network data. However, existing techniques do not generalize to sequential or trajectory data, which represents entities walking through the nodes of a network, such as passengers moving through transportation networks. The unit of observation in these data is fundamentally different, since we analyze observations of walks (e.g., a trip from airport A to airport C through airport B), rather than independent observations of edges or snapshots of graphs over time. In this work, we define sequential motifs in trajectory data, which are small, directed, and sequenced-ordered graphs corresponding to patterns in observed sequences. We draw a connection between counting and analysis of sequential motifs and Higher-Order Network (HON) models. We show that by mapping edges of a HON, specifically a kth-order DeBruijn graph, to sequential motifs, we can count and evaluate their importance in observed data, and we test our proposed methodology with two datasets: (1) passengers navigating an airport network and (2) people navigating the Wikipedia article network. We find that the most prevalent and important sequential motifs correspond to intuitive patterns of traversal in the real systems, and show empirically that the heterogeneity of edge weights in an observed higher-order DeBruijn graph has implications for the distributions of sequential motifs we expect to see across our null models.

ArXiv link: https://arxiv.org/abs/2112.05642

Tue, 21 Jun 2022

14:00 - 15:00
L6

The orbit method and normality of closures of nilpotent orbits

Dan Barbasch
(Cornell University, USA)
Abstract

The work of Kraft-Procesi classifies closures of nilpotent orbits that are normal in the cases of classical complex Lie algebras. Subsequent work of Ranee Brylinsky combines this work with the Theta correspondence as defined by Howe to attach a representation of the corresponding complex group. It provides a quantization of the closure of a nilpotent orbit. In joint work with Daniel Wong, we carry out a detailed analysis of these representations viewed as (\g,K)-modules of the complex group viewed as a real group. One consequence is a "representation theoretic" proof of the classification of Kraft-Procesi.

Mon, 20 Jun 2022
15:30
L5

Coxeter groups acting on CAT(0) cube complexes

Michah Sageev
Abstract

We will give a general overview of how one gets groups to act on CAT(0) cube complexes, how compatible such actions are and how this plays out in the setting of Coxeter groups.

 

Mon, 20 Jun 2022

12:45 - 13:45
L4

Large N Partition Functions, Holography, and Black Holes

Nikolay Bobev
Abstract

I will discuss the large N behavior of partition functions of the ABJM theory on compact Euclidean manifolds. I will pay particular attention to the S^3 free energy and the topologically twisted index for which I will present closed form expressions valid to all order in the large N expansion. These results have important implications for holography and the microscopic entropy counting of AdS_4 black holes which I will discuss. I will also briefly discuss generalizations to other SCFTs arising from M2-branes.

Fri, 17 Jun 2022

16:00 - 17:00
L5

Defect Central Charges

Adam Chalabi
(Southampton University)
Abstract

Conformal defects can be characterised by their contributions to the Weyl anomaly. The coefficients of these terms, often called defect central charges, depend on the particular defect insertion in a given conformal field theory. I will review what is currently known about defect central charges across dimensions, and present novel results. I will discuss many examples where they can be computed exactly without requiring any approximations or limits. Particular emphasis will be placed on recently developed tools for superconformal defects as well as defects in free theories.

Fri, 17 Jun 2022

14:00 - 15:00
L4
Fri, 17 Jun 2022

14:00 - 17:00
Large Lecture Theatre, Department of Statistics, University of Oxford

CDT in Mathematics of Random Systems June Workshop 2022

Ziheng Wang, Professor Ian Melbourne, Dr Sara Franceschelli
Further Information

Please contact @email for remote viewing details

Abstract

2:00 Ziheng Wang, EPSRC CDT in Mathematics of Random Systems Student

Continuous-time stochastic gradient descent for optimizing over the stationary distribution of stochastic differential equations

Abstract: We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using a stochastic estimate for the gradient of the stationary distribution. The gradient estimate satisfies an SDE and is simultaneously updated, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of our online algorithm for dissipative SDE models and present numerical results for other nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm.

2:45 Ian Melbourne,  Professor of Mathematics, University of Warwick

Interpretation of stochastic integrals, and the Levy area

Abstract: An important question in stochastic analysis is the appropriate interpretation of stochastic integrals. The classical Wong-Zakai theorem gives sufficient conditions under which smooth integrals converge to Stratonovich stochastic integrals. The conditions are automatic in one-dimension, but in higher dimensions it is necessary to take account of corrections stemming from the Levy area. The first part of the talk covers work with Kelly 2016, where we justified the Levy area correction for large classes of smooth systems, bypassing any stochastic modelling assumptions. The second part of the talk addresses a much less studied question: is the Levy area zero or nonzero for systems of physical interest, eg Hamiltonian time-reversible systems? In recent work with Gottwald, we classify (and clarify) the situations where such structure forces the Levy area to vanish. The conclusion of our work is that typically the Levy area correction is nonzero.

3:45 Break

4:15 Sara Franceschelli, Associate Professor,  École Normale Supérieure de Lyon

When is a model is a good model? Epistemological perspectives on mathematical modelling

When a model is a good model? Must it represent a specific target system? Allow to make predictions? Provide an explanation for observed behaviors?  After a brief survey of general epistemological questions on modelling, I will consider examples of mathematical modelling in physics and biology from the perspective of dynamical systems theory. I will first show that even if it has been little noticed by philosophers, dynamical systems theory itself as a mathematical theory has been a source of questions and criteria in order to assess the goodness of a model (notions of stability, genericity, structural stability). I will then discuss the theoretical fruitfulness of arguments of (in)stability in the mathematical modelling of morphogenesis.

 

Fri, 17 Jun 2022

14:00 - 15:00
L6

Data-driven early detection of potential high risk SARS-CoV-2 variants

Dr Marcin J. Skwark
(InstaDeep)
Abstract

Recent advances in Deep Learning have enabled us to explore new application domains in molecular biology and drug discovery - including those driven by complex processes that defy analytical modelling.  However, despite the combined forces of increased data, improving compute resources and continuous algorithmic innovation all bringing previously intractable problems into the realm of possibility, many advances are yet to make a tangible impact for life science discovery.  In this talk, Dr Marcin J. Skwark will discuss the challenge of bringing machine learning innovation to tangible real-world impact.  Following a general introduction of the topic, as well as newly available methods and data, he will focus on the modelling of COVID-19 variants and, in particular, the DeepChain Early Warning System (EWS) developed by InstaDeep in collaboration with BioNTech.  With thousands of new, possibly dangerous, SARS-CoV-2 variants emerging each month worldwide, it is beyond humanities combined capacity to experimentally determine the immune evasion and transmissibility characteristics of every one.  EWS builds on an experimentally tested AI-first computational biology platform to evaluate new variants in minutes, and is capable of risk monitoring variant lineages in near real-time.  This is done by combining an AI-driven protein structure prediction framework with large, spike protein sequence-oriented Transformer models to allow for rapid simulation-free assessment of the immune escape risk and expected fitness of new variants, conditioned on the current state of the world.  The system has been extensively validated in cooperation with BioNTech, both in terms of host cell infection propensity (including experimental assays of receptor binding affinity), and immune escape (pVNT assays with monoclonal antibodies and real-life donor sera). In these assessments, purely unsupervised, data-first methods of EWS have shown remarkable accuracy. EWS flags and ranks all but one of the SARS-CoV-2 Variants of Concern (Alpha, Beta, Gamma, Delta… Omicron), discriminates between subvariants (e.g. BA.1/BA.2/BA.4 etc. distinction) and for most of the adverse events allows for proactive response on the day of the observation. This allows for appropriate response on average six weeks before it is possible for domain experts using domain knowledge and epidemiological data. The performance of the system, according to internal benchmarks, improves with time, allowing for example for supporting the decisions on the emerging Omicron subvariants on the first days of their occurrence. EWS impact has been notable in general media [2, 3] for the system's applicability to a novel problem, ability to derive generalizable conclusions from unevenly distributed, sparse and noisy data, to deliver insights which otherwise necessitate long and costly experimental assays.

Fri, 17 Jun 2022

10:00 - 11:00
L4

Silt build up at Peel Ports locks

David Porter (Carbon Limiting Technologies), Chris Breward, Daniel Alty (Peel Ports; joining remotely)
(Peel Ports)
Abstract

Peel Ports operate a number of locks that allow ships to enter and leave the port. The lock gates comprise a single caisson structure which blocks the waterway when closed and retracts into the dockside as the gate opens. Build up of silt ahead of the opening lock gate can prevent it from fully opening or requiring excessive power to move. If the lock is not able to fully open, ships are unable to enter the port, leading to significant operational impacts for the whole port. Peel ports are interested in understanding, and mitigating, this silt build up. 

Thu, 16 Jun 2022

16:00 - 17:00
L4

Ax-Schanuel and exceptional integrability

Jonathan Pila
(University of Oxford)
Abstract

In joint work with Jacob Tsimerman we study when the primitive
of a given algebraic function can be constructed using primitives
from some given finite set of algebraic functions, their inverses,
algebraic functions, and composition. When the given finite set is just {1/x}
this is the classical problem of "elementary integrability".
We establish some results, including a decision procedure for this problem.

Thu, 16 Jun 2022

14:00 - 15:00
L2

Factorization in AdS/CFT

Carmen Jorge Diaz
(Oxford University)
Abstract
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome
Thu, 16 Jun 2022

14:00 - 15:00
L5

Recent results on finite element methods for incompressible flow at high Reynolds number

Erik Burman
(University College London)
Abstract

The design and analysis of finite element methods for high Reynolds flow remains a challenging task, not least because of the difficulties associated with turbulence. In this talk we will first revisit some theoretical results on interior penalty methods using equal order interpolation for smooth solutions of the Navier-Stokes’ equations at high Reynolds number and show some recent computational results for turbulent flows.

Then we will focus on so called pressure robust methods, i.e. methods where the smoothness of the pressure does not affect the upper bound of error estimates for the velocity of the Stokes’ system. We will discuss how convection can be stabilized for such methods in the high Reynolds regime and, for the lowest order case, show an interesting connection to turbulence modelling.

 

Thu, 16 Jun 2022

12:00 - 13:00
L2

Repulsive Geometry

Keenan Crane
(Carnegie Mellon Univeristy, School of Computer Science)
Further Information

 

Keenan Crane is the Michael B. Donohue Associate Professor in the School of Computer Science at Carnegie Mellon University, and a member of the Center for Nonlinear Analysis in the Department of Mathematical Sciences.  He is a Packard Fellow and recipient of the NSF CAREER Award, was a Google PhD Fellow in the Department of Computing and Mathematical Sciences at Caltech, and was an NSF Mathematical Postdoctoral Research Fellow at Columbia University.  His work applies insights from differential geometry and computer science to develop fundamental algorithms for working with real-world geometric data.  This work has been used in production at Fortune 500 companies, and featured in venues such as Communications of the ACM and Notices of the AMS, as well as in the popular press through outlets such as WIRED, Popular Mechanics, National Public Radio, and Scientific American.

Abstract

Numerous applications in geometric, visual, and scientific computing rely on the ability to nicely distribute points in space according to a repulsive potential.  In contrast, there has been relatively little work on equidistribution of higher-dimensional geometry like curves and surfaces—which in many contexts must not pass through themselves or each other.  This talk explores methods for optimization of curve and surface geometry while avoiding (self-)collision. The starting point is the tangent-point energy of Buck & Orloff, which penalizes pairs of points that are close in space but distant with respect to geodesic distance. We develop a discretization of this energy, and introduce a novel preconditioning scheme based on a fractional Sobolev inner product.  We further accelerate this scheme via hierarchical approximation, and describe how to incorporate into a constrained optimization framework. Finally, we explore how this machinery can be applied to problems in mathematical visualization, geometric modeling, and geometry processing.

 

 

Wed, 15 Jun 2022
14:00
L5

The heterotic $G_2$ system and coclosed $G_2$-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
(Oxford)
Abstract

When considering compatifications of heterotic string theory down to 3D, the heterotic $G_2$ system arises naturally. It is a system for both geometric fields and gauge fields over a manifold with a $G_2$-structure. In particular, it asks for the $G_2$-structure to be coclosed. We will begin this talk defining this system and giving a description of the geometry of cohomogeneity one manifolds. Then, we will look for coclosed $G_2$-structures in the cohomogeneity one setting. We will end up by proving the existence of a family of coclosed $G_2$-structures which are invariant under a cohomogeneity one action of $\text{SU}(2)^2$ on certain seven-dimensional simply connected manifolds.

Tue, 14 Jun 2022

16:00 - 17:00
C1

Semifinite tracial ultraproducts

James Gabe
(University of Southern Denmark)
Abstract

One of the most important constructions in operator algebras is the tracial ultrapower for a tracial state on a C*-algebra. This tracial ultrapower is a finite von Neumann algebra, and it appears in seminal work of McDuff, Connes, and more recently by Matui-Sato and many others for studying the structure and classification of nuclear C*-algebras. I will talk about how to generalise this to unbounded traces (such as the standard trace on B(H)). Here the induced tracial ultrapower is not a finite von Neumann algebra, but its multiplier algebra is a semifinite von Neumann algebra.

Tue, 14 Jun 2022

15:30 - 16:30
L6

Extreme eigenvalues of the Jacobi Ensembles

Brian Winn
(Loughborough University)
Abstract

The Jacobi Ensembles of random matrices have joint distribution of eigenvalues proportional to the integration measure in the Selberg integral. They can also be realised as the singular values of principal submatrices of random unitaries. In this talk we will review some old and new results concerning the distribution of the largest and smallest eigenvalues.

Tue, 14 Jun 2022
15:30
Virtual

Co-associative fibrations of $G_{2}$ manifolds: foundations and speculations.

Simon Donaldson
(Imperial College London and SCGP)
Further Information

The talk will be online (Zoom). People who would like to attend the seminar can also meet in person in L3.

Abstract

The introduction to the talk will review basics of $G_{2}$ geometry in seven dimensions, and associative and co-associative submanifolds. In one part of the talk we will explain how fibrations with co-associative fibres, near the “adiabatic limit” when the fibres are very small,  give insights into various questions about moduli spaces of $G_{2}$ structures and singularity formation. This part is mostly speculative. In the other part of the talk we discuss some analysis questions which enter when setting up the foundations of this adiabatic theory. These can be seen as codimension 2 analogues of free boundary problems and related questions have arisen in a number of areas of differential geometry recently.

Tue, 14 Jun 2022

14:30 - 15:00

TBA

TBA
Tue, 14 Jun 2022

14:00 - 15:00
C6

TBA

Luc Rocher
(Oxford Internet Institute)
Tue, 14 Jun 2022

14:00 - 15:00
L4

Resolution of the Erdős-Sauer problem on regular subgraphs

Benny Sudakov
(ETH Zurich)
Abstract

In this talk we discuss solution of the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an $n$-vertex graph can have without containing a $k$-regular subgraph, for some fixed integer $k\geq 3$. We prove that any $n$-vertex graph with average degree at least $C_k\log\log n$ contains a $k$-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially
improves an old result of Pyber, who showed that average degree at least $C_k\log n$ is enough.

Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.

Joint work with Oliver Janzer

Tue, 14 Jun 2022

14:00 - 15:00
L6

Invariable generation and totally deranged elements of simple groups

Scott Harper
(Bristol)
Abstract

By a classical theorem of Jordan, every faithful transitive action of a nontrivial finite group admits a derangement (an element with no fixed points). More recently, the existence of derangements with additional properties has attracted much attention, especially for primitive actions of almost simple groups. Surprisingly, there exist almost simple groups with elements that are derangements in every faithful primitive action; we say that these elements are totally deranged. I'll talk about ongoing work to classify the totally deranged elements of almost simple groups, and I'll mention how this solves a question of Garzoni about invariable generating sets for simple groups.

Tue, 14 Jun 2022

14:00 - 14:30
L5

The strain Hodge Laplacian and DGFEM for the incompatibility operator

Francis Aznaran
(Oxford University)
Abstract

Motivated by the physical relevance of many Hodge Laplace-type PDEs from the finite element exterior calculus, we analyse the Hodge Laplacian boundary value problem arising from the strain space in the linear elasticity complex, an exact sequence of function spaces naturally arising in several areas of continuum mechanics. We propose a discretisation based on the adaptation of discontinuous Galerkin FEM for the incompatibility operator $\mathrm{inc} := \mathrm{rot}\circ\mathrm{rot}$, using the symmetric-tensor-valued Regge finite element to discretise  the strain field; via the 'Regge calculus', this element has already been successfully applied to discretise another metric tensor, namely that arising in general relativity. Of central interest is the characterisation of the associated Sobolev space $H(\mathrm{inc};\mathbb{R}^{d\times d}_{\mathrm{sym}})$. Building on the pioneering work of van Goethem and coauthors, we also discuss promising connections between functional analysis of the $\mathrm{inc}$ operator and Kröner's theory of intrinsic elasticity in the presence of defects.

This is based on ongoing work with Dr Kaibo Hu.

Tue, 14 Jun 2022

12:00 - 13:15
Virtual

Quantum hair and black hole information

Xavier Calmet
(University of Sussex)
Abstract

In this talk, I review some recent results obtained for black holes using
effective field theory methods applied to quantum gravity, in particular the
unique effective action. Black holes are complex thermodynamical objects
that not only have a temperature but also have a pressure. Furthermore, they
have quantum hair which provides a solution to the black hole information
paradox.

Mon, 13 Jun 2022

16:30 - 17:30
L5

Tomographic Strichartz inequalities for the Schrodinger equation

Susana Gutierrez
(Birmingham University)
Abstract

The aim of this talk is to present some novel inequalities for the k-plane transform acting on the modulus square of solutions of the linear time-dependent Schrodinger equation. Our motivation for studying these tomographic expressions comes for virial identities in the context of Schrodinger equations, where tomographic Strichartz estimates of the type we will discuss here appear naturally.

Mon, 13 Jun 2022

16:00 - 17:00
C1

Arithmetic Topology and Duality Theorems

Jay Swar
Abstract

I'll introduce the classical arithmetic topology dictionary of Mumford-Manin-Mazur-Morishita-etc. I'll then present an interesting instance of parallel phenomena related to symplectic structures on moduli spaces of certain bundles. The arithmetic side turns out to be an application of Poitou-Tate duality. Depending on time, I'll delve into the delicate details which make the analogy useful for Diophantine geometers.

Mon, 13 Jun 2022

15:30 - 16:30
L3

Fluid dynamics on geometric rough paths and variational principles

JAMES-MICHAEL LEAHY
(Imperial College London )
Abstract

Noether’s theorem plays a fundamental role in modern physics by relating symmetries of a Lagrangian to conserved quantities of the Euler-Lagrange equations. In ideal fluid dynamics, the theorem relates the particle labeling symmetry to a Kelvin circulation law. Circulation is conserved for incompressible flows and, otherwise, is generated by advected variables through the momentum map due to a broken symmetry. We will introduce variational principles for fluid dynamics that constrain advection to be the sum of a smooth and geometric rough-in-time vector field. The corresponding rough Euler-Poincare equations satisfy a Kelvin circulation theorem and lead to a natural framework to develop parsimonious non-Markovian parameterizations of subgrid-scale dynamics.

Mon, 13 Jun 2022
14:15
L5

Open FJRW theory

Mark Gross
(Cambridge)
Abstract

I will describe joint work with Tyler Kelly and Ran Tessler. FJRW (Fan-Jarvis-Ruan-Witten) theory is an enumerative theory of quasi-homogeneous singularities, or alternatively, of Landau-Ginzburg models. It associates to a potential W:C^n -> C given by a quasi-homogeneous polynomial moduli spaces of (orbi-)curves of some genus and marked points along with some extra structure, and these moduli spaces carry virtual fundamental classes as constructed by Fan-Jarvis-Ruan. Here we specialize to the case W=x^r+y^s and construct an analogous enumerative theory for disks. We show that these open invariants provide perturbations of the potential W in such a way that mirror symmetry becomes manifest. Further, these invariants are dependent on certain choices of boundary conditions, but satisfy a beautiful wall-crossing formalism.

Mon, 13 Jun 2022

14:00 - 15:00
L4

Highly accurate protein structure prediction with AlphaFold

Jonas Adler
(Google)
Abstract

Predicting a protein’s structure from its primary sequence has been a grand challenge in biology for the past 50 years, holding the promise to bridge the gap between the pace of genomics discovery and resulting structural characterization. In this talk, we will describe work at DeepMind to develop AlphaFold, a new deep learning-based system for structure prediction that achieves high accuracy across a wide range of targets. We demonstrated our system in the 14th biennial Critical Assessment of Protein Structure Prediction (CASP14) across a wide range of difficult targets, where the assessors judged our predictions to be at an accuracy “competitive with experiment” for approximately 2/3rds of proteins. The talk will cover both the underlying machine learning ideas and the implications for biological research as well as some promising further work.

Mon, 13 Jun 2022

12:45 - 13:45
L1

TBA

Tom Melia
(Kavli IPMU)
Mon, 13 Jun 2022

12:45 - 13:45
Online

Averaging over approximate CFTs

Alexandre Belin
(Cern)
Further Information

This seminar has been canceled.

Abstract

In this talk, I will investigate the origin of Euclidean wormholes in the gravitational part integral in the context of AdS/CFT. These geometries are confusing since they prevent products of partition functions to factorize, as they should in any quantum mechanical system. I will briefly review the different proposals for the origin of these wormholes, one of which is that one should consider ensemble of average of boundary systems instead of a fixed quantum system with a fixed Hamiltonian. I will explain that it seems unlikely that one can average over CFTs and present a new idea: averaging over approximate CFTs, which I will define. I will then study the variance of the crossing equation in an ensemble relevant for 3d gravity. Based on work in progress with de Boer, Jafferis, Nayak and Sonner.

Fri, 10 Jun 2022

16:00 - 17:00
N4.01

From Gravitational Orbits to Quantum Scars

Matthew Dodelson
(Cern)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

I will describe recent work with Zhibeodov on the boundary interpretation of orbits around an AdS black hole. When the orbits are far away from the black hole, these orbits describe heavy-light double-twist operators on the boundary. I will discuss how the dimensions of these operators can be computed exactly in terms of quasinormal modes in the bulk, using techniques from a paper to appear soon with Grassi, Iossa, Lichtig, and Zhiboedov. Then I will explain how these results are related to the concept of quantum scars, which are eigenstates that do not obey ETH. 

Fri, 10 Jun 2022

16:00 - 17:00
L2

Maths Meets Stats

Melanie Weber and Francesca Panero
Abstract

Melanie Weber 

Title: Geometric Methods for Machine Learning and Optimization

Abstract: A key challenge in machine learning and optimization is the identification of geometric structure in high-dimensional data. Such structural understanding is of great value for the design of efficient algorithms and for developing fundamental guarantees for their performance. Motivated by the observation that many applications involve non-Euclidean data, such as graphs, strings, or matrices, we discuss how Riemannian geometry can be exploited in Machine Learning and Optimization. First, we consider the task of learning a classifier in hyperbolic space. Such spaces have received a surge of interest for representing large-scale, hierarchical data, since they achieve better representation accuracy with fewer dimensions. Secondly, we consider the problem of optimizing a function on a Riemannian manifold. Specifically, we will consider classes of optimization problems where exploiting Riemannian geometry can deliver algorithms that are computationally superior to standard (Euclidean) approaches.

 

Francesca Panero

Title: A general overview of the different projects explored during my DPhil in Statistics.

Abstract: In the first half of the talk, I will present my work on statistical models for complex networks. I will propose a model to describe sparse spatial random graph underpinned by the Bayesian nonparametric theory and asymptotic properties of a more general class of these models, regarding sparsity, degree distribution and clustering coefficients.

The second half will be devoted to the statistical quantification of the risk of disclosure, a quantity used to evaluate the level of privacy that can be achieved by publishing a microdata file without modifications. I propose two ways to estimate the risk of disclosure, using both frequentist and Bayes nonparametric statistics.

 

Fri, 10 Jun 2022
15:00
L3

Directed networks through simplicial paths and Hochschild homology

Henri Riihimäki
(KTH Royal Institute of Technology)
Abstract

Directed graphs are a model for various phenomena in the
sciences. In topological data analysis particularly the advent of
applying topological tools to networks of brain neurons has spawned
interest in constructing topological spaces out of digraphs, developing
computational tools for obtaining topological information, and using
these to understand networks. At the end of the day, (homological)
computations of the spaces reveal something about the geometric
realisation, thereby losing the directionality information.

However, digraphs can also be associated with path algebras. We can now
consider applying Hochschild homology to extract information, hopefully
obtaining something more refined in terms of the combinatorics of the
directed edges and paths in the digraph. Unfortunately, Hochschild
homology tends to vanish beyond degree 1. We can overcome this by
considering different higher paths of simplices, and thus introduce
Hochschild homology of digraphs in higher degrees. Moreover, this
procedure gives an implementable persistence pipeline for network
analysis. This is a joint work with Luigi Caputi.

Fri, 10 Jun 2022

14:00 - 15:00
Online

Smith–Treumann theory and the categorical conjecture

Joshua Ciappara
(University of Sydney)
Further Information

This seminar will be at the normal time of 2pm, this is a change from previous announcements!

Abstract

In the early 2010s, Riche and Williamson proposed new character formulas for simple and indecomposable tilting modules over reductive algebraic groups $G$ in positive characteristic. Even better, they showed their formulas would follow from a conceptually satisfying "categorical conjecture", which they were able to prove for $G = GL_n$. Our first goal in this talk will be to explain the statement of the categorical conjecture, indicating its connection to representation theory and assuming minimal background knowledge. Subsequently, we will introduce Smith–Treumann theory and outline how it may be applied to prove the categorical conjecture in general. Time permitting, we will conclude with remarks on future directions of study.

Fri, 10 Jun 2022

14:00 - 15:00
L6

Systems-mechanobiology of health and disease

Dr Fabian Spill
(School of Mathematics University of Birmingham)
Abstract

Experimental biologists study diseases mostly through their abnormal molecular or cellular features. For example, they investigate genetic abnormalities in cancer, hormonal imbalances in diabetes, or an aberrant immune system in vascular diseases. Moreover, many diseases also have a mechanical component which is critical to their deadliness. Most notably, cancer kills typically through metastasis, where the cancer cells acquire the capability to remodel their adhesions and to migrate. Solid tumours are also characterised by physical changes in the extracellular matrix – the material surrounding the cells. While such physical changes are long known, only relatively recent research revealed that cells can sense altered physical properties and transduce them into chemical information. An example is the YAP/TAZ signalling pathway that can activate in response to altered matrix mechanics and that can drive tumour phenotypes such as the rate of cell proliferation.
Systems-biology models aim to study diseases holistically. In this talk, I will argue that physical signatures are a critical part of many diseases and therefore, need to be incorporated into systems-biology. Crucially, physical disease signatures bi-directionally interact with molecular and cellular signatures, presenting a major challenge to developing such models. I will present several examples of recent and ongoing work aimed at uncovering the relations between mechanical and molecular/cellular signatures in health and disease. I will discuss how blood vessel cells interact mechano-chemically with each other to regulate the passage of cells and nutrients between blood and tissue and how cancer cells grow and die in response to mechanical and geometrical stimuli.

Fri, 10 Jun 2022

13:30 - 17:00
Lecture Theatre 5

Groups and Geometry in the South East

(Mathematical Institute)
Further Information

Property (T) and random quotients of hyperbolic groups

1:30

Calum Ashcroft (Cambridge)

In his original manuscript on hyperbolic groups, Gromov asked whether random quotients of non-elementary hyperbolic groups have Property (T). This question was later refined by Ollivier, and then answered in the case of random quotients of free groups by Zuk (and Kotowski--Kotowski).

In this talk we answer the Gromov--Ollivier question in the affirmative. We will discuss random quotients and some of their properties, in particular with relation to Property (T).

Connections between hyperbolic geometry and median geometry

2:45

Cornelia Drutu (Oxford)

In this talk I shall explain how groups endowed with various forms of hyperbolic geometry, from lattices in rank one simple groups to acylindrically hyperbolic groups, present various degrees of compatibility with the median geometry. This is joint work with Indira Chatterji, and with John Mackay.

TEA

3:45

Division, group rings, and negative curvature

4:00

Grigori Avramidi (Bonn)

In 1997 Delzant observed that fundamental groups of hyperbolic manifolds with large injectivity radius have nicely behaved group rings. In particular, these rings have no zero divisors and only the trivial units. In this talk I will explain how to extend this observation to show such rings have a division algorithm (generalizing the division algorithm for group rings of free groups discovered by Cohn) and that these group rings have``freedom theorems’’ showing that all of their ideals that are generated by few elements are free, where the specific value of `few’ depends on the injectivity radius of the manifold (which can be viewed as generalizations from subgroups to ideals of some freedom theorems of Delzant and Gromov). This has geometric consequences to the homotopy classification of 2-complexes with surface fundamental groups and to complexity of cell structures on hyperbolic manifolds.

Fri, 10 Jun 2022

10:00 - 11:00
L5

Understanding alumina raft melting/splitting phenomenon

Ellen Nordgård-Hansen, Eirik Manger
(NORCE)
Abstract

Alumina is a raw material for aluminium production, and Attila Kovacs made mathematical models for alumina feeding, including heating, melt infiltration, and dissolution. One of his assumptions is that when several alumina particle stick together to form a "raft", these will stay together even if initial frozen cryolite inside this "raft" melts, and even if almost all alumina in the "raft" is dissolved. In reality, the "raft" will break up, either from one of the two mechanisms already mentioned, or from the expansion of gas or water vapor stuck within the "raft". We would therefore like to investigate mathematically when and under which circumstances this splitting up will take place. 

Thu, 09 Jun 2022

16:00 - 18:00
Queen's College

“So Fair a Subterraneous City”: Mining, Maps, and the Politics of Geometry in the Seventeenth Century

Thomas Morel
(Bergische Universitaet Wuppertal)
Further Information

Venue: Shulman Auditorium, Queen's

Abstract

In the aftermath of the Thirty Years War (1618–1648), the mining regions of Central Europe underwent numerous technical and political evolutions. In this context, the role of underground geometry expanded considerably: drawing mining maps and working on them became widespread in the second half of the seventeenth century. The new mathematics of subterranean surveyors finally realized the old dream of “seeing through stones,” gradually replacing alternative tools such as written reports of visitations, wood models, or commented sketches.

I argue that the development of new cartographic tools to visualize the underground was deeply linked to broad changes in the political structure of mining regions. In Saxony, arguably the leading mining region, captain-general Abraham von Schönberg (1640–1711) put his weight and reputation behind the new geometrical technology, hoping that its acceptance would in turn help him advance his reform agenda. At-scale representations were instrumental in justifying new investments, while offering technical road maps to implement them.

 

Thu, 09 Jun 2022

14:00 - 15:00
Virtual

Maximizing the Spread of Symmetric Non-Negative Matrices

John Urschel
(Institute for Advanced Study)
Abstract

The spread of a matrix is defined as the diameter of its spectrum. In this talk, we consider the problem of maximizing the spread of a symmetric non-negative matrix with bounded entries and discuss a number of recent results. This optimization problem is closely related to a pair of conjectures in spectral graph theory made by Gregory, Kirkland, and Hershkowitz in 2001, which were recently resolved by Breen, Riasanovsky, Tait, and Urschel. This talk will give a light overview of the approach used in this work, with a strong focus on ideas, many of which can be abstracted to more general matrix optimization problems.

Thu, 09 Jun 2022

12:00 - 13:00
L1

The ever-growing blob of fluid

Graham.Benham@maths.ox.ac.uk
(Mathematical Institute)
Abstract

Consider the injection of a fluid onto an impermeable surface for an infinite length of time... Does the injected fluid reach a finite height, or does it keep on growing forever? The classical theory of gravity currents suggests that the height remains finite, causing the radius to grow outwards like the square root of time. When the fluid resides within a porous medium, the same is thought to be true. However, recently I used some small scale experiments and numerical simulations, spanning 12 orders of magnitude in dimensionless time, to demonstrate that the height actually grows very slowly, at a rate ~t^(1/7)*(log(t))^(1/2). This strange behaviour can be explained by analysing the flow in a narrow "inner region" close to the source, in which there are significant vertical velocities and non-hydrostatic pressures. Analytical scalings are derived which match closely with both numerics and experiments, suggesting that the blob of fluid is in fact ever-growing, and therefore becomes unbounded with time.