Tue, 23 Nov 2021

15:30 - 16:30
L6

Can one hear a real symmetric matrix?

Uzy Smilansky
(Weizmann Institute of Science)
Abstract

The question asked in the title is addressed from two points of view: First, we show that providing enough (term to be explained) spectral data, suffices to reconstruct uniquely generic (term to be explained) matrices. The method is well defined but requires somewhat cumbersome computations. Second, restricting the attention to banded matrices with band-width much smaller than the dimension, one can provide more spectral data than the number of unknown matrix elements. We make use of this redundancy to reconstruct generic banded matrices in a much more straight-forward fashion where the “cumbersome computations” can be skipped over. Explicit criteria for a matrix to be in the non-generic set are provided.

 

Tue, 23 Nov 2021
14:30
L3

A scalable and robust vertex-star relaxation for high-order FEM

Pablo Brubeck
(University of Oxford)
Abstract

The additive Schwarz method with vertex-centered patches and a low-order coarse space gives a p-robust solver for FEM discretizations of symmetric and coercive problems. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for each patch. In this work we introduce a direct solver for separable patch problems that scales to very high polynomial degree on tensor product cells. The solver constructs a tensor product basis that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial degree. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. We apply this approach as a relaxation for the displacement block of mixed formulations of incompressible linear elasticity.

Tue, 23 Nov 2021

14:00 - 15:00
Virtual

Signal processing on graphs and complexes

Michael Schaub
(RWTH Aachen University)
Abstract

We are confronted with signals defined on the nodes of a graph in many applications.  Think for instance of a sensor network measuring temperature; or a social network, in which each person (node) has an opinion about a specific issue.  Graph signal processing (GSP) tries to device appropriate tools to process such data by generalizing classical methods from signal processing of time-series and images -- such as smoothing, filtering and interpolation -- to signals defined on graphs.  Typically, this involves leveraging the structure of the graph as encoded in the spectral properties of the graph Laplacian.

In other applications such as traffic network analysis, however, the signals of interest are naturally defined on the edges of a graph, rather than on the nodes. After a very brief recap of the central ideas of GSP, we examine why the standard tools from GSP may not be suitable for the analysis of such edge signals.  More specifically, we discuss how the underlying notion of a 'smooth signal' inherited from (the typically considered variants of) the graph Laplacian are not suitable when dealing with edge signals that encode flows.  To overcome this limitation we devise signal processing tools based on the Hodge-Laplacian and the associated discrete Hodge Theory for simplicial (and cellular) complexes.  We discuss applications of these ideas for signal smoothing, semi-supervised and active learning for edge-flows on discrete (or discretized) spaces.

Tue, 23 Nov 2021
14:00
Virtual

PageRank on directed preferential attachment graph

Mariana Olvera-Cravioto
(UNC Chapel Hill)
Abstract

We study a family of evolving directed random graphs that includes the directed preferential model and the directed uniform attachment model. The directed preferential model is of particular interest since it is known to produce scale-free graphs with regularly varying in-degree distribution. We start by describing the local weak limits for our family of random graphs in terms of randomly stopped continuous-time branching processes, and then use these limits to establish the asymptotic behavior of the corresponding PageRank distribution. We show that the limiting PageRank distribution decays as a power-law in both models, which is surprising for the uniform attachment model where the in-degree distribution has exponential tails. And even for the preferential attachment model, where the power-law hypothesis suggests that PageRank should follow a power-law, our result shows that the two tail indexes are different, with the PageRank distribution having a heavier tail than the in-degree distribution.

Tue, 23 Nov 2021
14:00
L3

Numerical approximation of viscous contact problems in glaciology

Gonzalo Gonzalez
(University of Oxford)
Abstract

Viscous contact problems describe the time evolution of fluid flows in contact with a surface from which they can detach. These type of problems arise in glaciology when, for example, modelling the evolution of the grounding line of a marine ice sheet or the formation of a subglacial cavity. Such problems are generally modelled as a time dependent viscous Stokes flow with a free boundary and contact boundary conditions. Although these applications are of great importance in glaciology, a systematic study of the numerical approximation of viscous contact problems has not been carried out yet. In this talk, I will present some of the challenges that arise when approximating these problems and some of the ideas we have come up with for overcoming them.

Tue, 23 Nov 2021
12:00
Virtual

Wick rotation and the axiomatisation of quantum field theory

Graeme Segal
Abstract

I shall present joint work with Maxim Kontsevich describing an interesting
domain of complex metrics on a smooth manifold. It is a complexification of
the space of ordinary Riemannian metrics, and has the Lorentzian metrics
(but not metrics of other signatures) on its boundary. Use of the domain
leads to a modified axiom system for QFT which illuminates not only the
special role of Lorentz signature, but also of features such as local
commutativity, unitarity, and global hyperbolicity.

Tue, 23 Nov 2021
09:00
Virtual

Deletion and contraction for Hausel-Proudfoot spaces

Michael McBreen
(Hong Kong)
Abstract

Dolbeault hypertoric manifolds are hyperkahler integrable systems generalizing the Ooguri-Vafa space. They approximate the Hitchin fibration near a totally degenerate nodal spectral curve. On the other hand, Betti hypertoric varieties are smooth affine varieties parametrizing microlocal sheaves on the same nodal spectral curve. I will review joint work with Zsuzsanna Dansco and Vivek Shende (arXiv:1910.00979) which constructs a diffeomorphism between the Dolbeault and Betti hypertorics, and proves that it intertwines the perverse and weight filtrations on their cohomologies. I will describe our main tool : deletion-contraction sequences arising from either smoothing a node of the spectral curve or separating its branches. I will also discuss some more recent developments and open questions.

Mon, 22 Nov 2021

16:00 - 17:00
L6

A Smörgåsbord of Number Theory (pre-PhDs Encouraged!)

George Robinson, Nadav Gropper, Michael Curran, Ofir Gorodetsky
Abstract

The speakers will be giving short presentations introducing topics in algebraic number theory, arithmetic topology, random matrix theory, and analytic number theory.

Undergrads and Master's students are encouraged to come and sample a taste of research in these areas.

 

Mon, 22 Nov 2021

16:00 - 17:00
L3

Gibbs measures in infinite dimensions - Some new results on a classical topic

HENDRIK WEBER
(University of Bath)
Abstract

Gibbs measures on spaces of functions or distributions play an important role in various contexts in mathematical physics.  They can, for example, be viewed as continuous counterparts of classical spin models such as the Ising model, they are an important stepping stone in the rigorous construction of Quantum Field Theories, and they are invariant under the 
flow of certain dispersive PDEs, permitting to develop a solution theory with random initial data, well below the deterministic regularity threshold. 

These measures have been constructed and studied, at least since the 60s, but over the last few years there has been renewed interest, partially due to new methods in stochastic analysis, including Hairer’s theory of regularity structures and Gubinelli-Imkeller-Perkowski’s theory of paracontrolled distributions. 

In this talk I will present two independent but complementary results that can be obtained with these new techniques. I will first show how to obtain estimates on samples from of the Euclidean $\phi^4_3$ measure, based on SPDE methods. In the second part, I will discuss a method to show the emergence of phase transitions in the $\phi^4_3$ theory.


 

Mon, 22 Nov 2021

16:00 - 17:00
L5

Linearised shock-capturing -- a 30-year history and some open problems

Mike Giles
(Oxford University)
Abstract

In this talk I will discuss the development and justification of linearised shock-capturing for aeronautical applications such as flutter, forced response and design optimisation.  At its core is a double-limiting process, reducing both the viscosity and the size of the unsteady or steady perturbation to zero. The design optimisation also requires the consideration of the adjoint equations, but with shock-capturing this is best done at the level of the numerical discretisation, rather than the PDE.

Mon, 22 Nov 2021
15:45
Virtual

Graphically discrete groups and rigidity

Emily Stark
(Wesleyan University)
Abstract

Rigidity theorems prove that a group's geometry determines its algebra, typically up to virtual isomorphism. Motivated by rigidity problems, we study graphically discrete groups, which impose a discreteness criterion on the automorphism group of any graph the group acts on geometrically. Classic examples of graphically discrete groups include virtually nilpotent groups and fundamental groups of closed hyperbolic manifolds. We will present new examples, proving this property is not a quasi-isometry invariant. We will discuss action rigidity for free products of residually finite graphically discrete groups. This is joint work with Alex Margolis, Sam Shepherd, and Daniel Woodhouse.

Mon, 22 Nov 2021
14:15
L4

Purely inseparable Galois theory

Lukas Brantner
(Oxford University)
Abstract

A field extension $F/K$ in characteristic $p$ is purely inseparable if for each $x$ in $F$, some power $x^{p^n}$ belongs to $K$. Using methods from homotopy theory, we construct a Galois correspondence for finite purely inseparable field extensions $F/K$, generalising a classical result of Jacobson for extensions of exponent one (where $x^p$ belongs to $K$ for all $x$ in $F$). This is joint work with Waldron.

Mon, 22 Nov 2021

14:00 - 15:00
Virtual

On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness

Murat Erdogdu
(University of Toronto)
Abstract

We study sampling from a target distribution $e^{-f}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm. For any potential function $f$ whose tails behave like $\|x\|^\alpha$ for $\alpha \in [1,2]$, and has $\beta$-H\"older continuous gradient, we derive the sufficient number of steps to reach the $\epsilon$-neighborhood of a $d$-dimensional target distribution as a function of $\alpha$ and $\beta$. Our rate estimate, in terms of $\epsilon$ dependency, is not directly influenced by the tail growth rate $\alpha$ of the potential function as long as its growth is at least linear, and it only relies on the order of smoothness $\beta$.

Our rate recovers the best known rate which was established for strongly convex potentials with Lipschitz gradient in terms of $\epsilon$ dependency, but we show that the same rate is achievable for a wider class of potentials that are degenerately convex at infinity.

Mon, 22 Nov 2021
13:00
L2

M-theory, enumerative geometry, and representation theory of affine Lie algebras

Dylan Butson
(Oxford University)
Further Information

Note unusual time (1pm) and room (L2)

Abstract

 I will review some well-established relationships between four manifolds and vertex algebras that can be deduced from studying the M5-brane worldvolume theory, and outline some of the corresponding results in mathematics which have been understood so far. I will then describe a proposal of Gaiotto-Rapcak to generalize these ideas to the setting of multiple M5 branes wrapping divisors in toric Calabi-Yau threefolds, and explain work in progress on understanding the mathematical implications of this proposal as a complex network of relationships between the enumerative geometry of sheaves on threefolds and the representation theory of affine Lie algebras.

Sun, 21 Nov 2021

17:30 - 18:30
L1

Oxford Mathematics and Orchestra of the Age of Enlightenment: Bach, the Universe & Everything - Can you hear the shape of a drum?

Jon Chapman
(Oxford University)
Further Information

Can you hear the shape of a drum? 

Discover the answer to this pressing question and more in the new series of Bach, the Universe & Everything. This secular Sunday series is a collaborative music and maths event between the Orchestra of the Age of Enlightenment and Oxford Mathematics. Through a series of thought-provoking Bach cantatas, readings and talks from leading Oxford thinkers, we seek to create a community similar to the one that Bach enjoyed in Leipzig until 1750.

Book tickets here: £15

 

Fri, 19 Nov 2021
16:00
N4.01

Symmetries and Completeness in EFT and Gravity

Jake McNamara
(Harvard)
Further Information

It is also possible to join online via Zoom.

Abstract

We discuss the formal relationship between the absence of global symmetries and completeness, both in effective field theory and in quantum gravity. In effective field theory, we must broaden our notion of symmetry to include non-invertible topological operators. However, in gravity, the story is simplified as the result of charged gravitational solitons.

Fri, 19 Nov 2021

16:00 - 17:00
L1

Mathematigals

(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

How can we make maths more accessible, promote its many applications, and encourage more women to enter the field? These are the questions we aim to address with Mathematigals.

Caoimhe Rooney and Jessica Williams met in 2015 at the start of their PhDs in mathematics in Oxford, and in 2020, they co-founded Mathematigals. Mathematigals is an online platform producing content to demonstrate fun mathematical curiosities, showcase ways maths can be used in real life, and promote female mathematicians. Mathematigals primarily produces animated videos that present maths in a way that is engaging to the general public.

In this session, Jess and Caoimhe will talk about their initial motivation to begin Mathematigals, demonstrate the process behind their content creation, and describe their future visions for the platform. The session will end with an opportunity for the audience to provide feedback or ideas to help Mathematigals on their journey to encourage future mathematicians.

 

Fri, 19 Nov 2021

15:00 - 16:00
N3.12

Towards a Riemann-Hilbert correspondence for D-cap-modules

Finn Wiersig
(University of Oxford)
Abstract

Locally analytic representations of $p$-adic Lie groups are of interest in several branches of number theory, for example in the theory of automorphic forms and in the $p$-adic local Langlands program. To better understand these representations, Ardakov-Wadsley introduced a sheaf of infinite order differential operators $\overparen{\mathcal{D}}$ on smooth rigid analytic spaces, which resulted in several Beilinson-Bernstein style localisation theorems. In this talk, we discuss the current research on analogues of a Riemann-Hilbert correspondence for $\overparen{\mathcal{D}}$-modules, and what this has to do with complete convex bornological vector spaces.

Fri, 19 Nov 2021

15:00 - 17:00
Imperial College

November CDT in Maths of Random Systems Seminars

Felix Prenzel, Benedikt Petko & Dante Kalise
(Imperial College London and University of Oxford)
Further Information

Please email @email for the link to view talks remotely.

Abstract

High-dimensional approximation of Hamilton-Jacobi-Bellman PDEs – architectures, algorithms and applications

Hamilton-Jacobi Partial Differential Equations (HJ PDEs) are a central object in optimal control and differential games, enabling the computation of robust controls in feedback form. High-dimensional HJ PDEs naturally arise in the feedback synthesis for high-dimensional control systems, and their numerical solution must be sought outside the framework provided by standard grid-based discretizations. In this talk, I will discuss the construction novel computational methods for approximating high-dimensional HJ PDEs, based on tensor decompositions, polynomial approximation, and deep neural networks.

Fri, 19 Nov 2021

14:00 - 15:00
L3

Predicting atrial fbrillation treatment outcomes through mathematical modelling, signal processing and machine learning

Dr Caroline Roney
(Kings’ College London)
Abstract

Catheter ablation and antiarrhythmic drug therapy approaches for treatment of atrial fibrillation are sub-optimal. This is in part because it is challenging to predict long-term response to therapy from short-term measurements, which makes it difficult to select optimal patient-specific treatment approaches. Clinical trials identify patient demographics that provide prediction of long-term response to standard treatments across populations. Patient-specific biophysical models can be used to assess novel treatment approaches but are typically applied in small cohorts to investigate the acute response to therapies. Our overall aim is to use machine learning approaches together with patient-specific biophysical simulations to predict long-term atrial fibrillation recurrence after ablation or drug therapy in large populations.

In this talk I will present our methodology for constructing personalised atrial models from patient imaging and electrical data; present results from biophysical simulations of ablation treatment; and finally explain how we are combining these methodologies with machine learning techniques for predicting long-term treatment outcomes.

 

Fri, 19 Nov 2021

10:00 - 11:30
N3.12

Virtual classes via vanishing cycles

Tasuki Kinjo
(Kavli IPMU)
Abstract

[REMOTE TALK]

In this talk, we will propose a new construction of the virtual fundamental classes of quasi-smooth derived schemes using the vanishing cycle complexes. This is based on the dimensional reduction theorem of cohomological Donaldson—Thomas invariants which can be regarded as a variant of the Thom isomorphism. We will also discuss a conjectural approach to construct DT4 virtual classes using the vanishing cycle complexes.

Zoom link: https://us02web.zoom.us/j/86267335498?pwd=R2hrZ1N3VGJYbWdLd0htZzA4Mm5pd…

Thu, 18 Nov 2021
14:00
L6

Mock Modular Forms

Palash Singh
(Oxford University)
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 18 Nov 2021
14:00
L4

Infinite-Dimensional Spectral Computations

Matt Colbrook
(University of Cambridge)
Abstract

Computing spectral properties of operators is fundamental in the sciences, with applications in quantum mechanics, signal processing, fluid mechanics, dynamical systems, etc. However, the infinite-dimensional problem is infamously difficult (common difficulties include spectral pollution and dealing with continuous spectra). This talk introduces classes of practical resolvent-based algorithms that rigorously compute a zoo of spectral properties of operators on Hilbert spaces. We also discuss how these methods form part of a broader programme on the foundations of computation. The focus will be computing spectra with error control and spectral measures, for general discrete and differential operators. Analogous to eigenvalues and eigenvectors, these objects “diagonalise” operators in infinite dimensions through the spectral theorem. The first is computed by an algorithm that approximates resolvent norms. The second is computed by building convolutions of appropriate rational functions with the measure via the resolvent operator (solving shifted linear systems). The final part of the talk provides purely data-driven algorithms that compute the spectral properties of Koopman operators, with convergence guarantees, from snapshot data. Koopman operators “linearise” nonlinear dynamical systems, the price being a reduction to an infinite-dimensional spectral problem (c.f. “Koopmania”, describing their surge in popularity). The talk will end with applications of these new methods in several thousand state-space dimensions.

Thu, 18 Nov 2021

12:00 - 13:00
L3

IAM Seminar (TBC)

Hélène de Maleprade
(Sorbonne Jean Le Rond d’Alembert Lab)
Further Information

Hélène de Maleprade is maîtresse de conférence (assistant professor) at Sorbonne Université, in the Institut Jean Le Rond ∂'Alembert, in Paris. Her research focus is now on the swimming of micro-organisms in complex environments inspired by pollution, using soft matter.

You can read her work here.

Abstract

Microscopic green algae show great diversity in structural complexity, and successfully evolved efficient swimming strategies at low Reynolds numbers. Gonium is one of the simplest multicellular algae, with only 16 cells arranged in a flat plate. If the swimming of unicellular organisms, like Chlamydomonas, is nowadays widely studied, it is less clear how a colony made of independent Chlamydomonas-like cells performs coordinated motion. This simple algae is therefore a key organism to model the evolution from single-celled to multicellular locomotion.

In the absence of central communication, how can each cell adapt its individual photoresponse to efficiently reorient the whole algae? How crucial is the distinctive Gonium squared structure?

In this talk, I will present experiments investigating the shape and the phototactic swimming of Gonium, using trajectory tracking and micro-pipette techniques. I will explain our model linking the individual flagella response to the colony trajectory. This eventually emphasises the importance of biological noise for efficient swimming.

Thu, 18 Nov 2021
11:30
Virtual

Some model theory of the curve graph

Javier de la Nuez González
(University of the Basque Country (UPV/EHU))
Abstract

The curve graph of a surface of finite type is a fundamental object in the study of its mapping class group both from the metric and the combinatorial point of view. I will discuss joint work with Valentina Disarlo and Thomas Koberda where we conduct a thorough study of curve graphs from the model theoretic point of view, with particular emphasis in the problem of interpretability between different curve graphs and other geometric complexes.   

Wed, 17 Nov 2021

16:00 - 17:00
C5

Cubulating groups acting on polygonal complexes

Calum Ashcroft
(University of Cambridge)
Abstract

Given a group G acting on a CAT(0) polygonal complex, X, it is natural to ask whether the structure of X allows us to deduce properties of G. We discuss some recent work on local properties that X may possess which allow us to answer these questions - in many cases we can in fact deduce that the group is a linear group over Z.

Wed, 17 Nov 2021

14:00 - 15:00
L5

Symplectic duality, 3d mirror symmetry, and the Coulomb branch construction of Braverman-Finkelberg-Nakajima

Dylan Butson
Abstract

I'll explain 'symplectic duality', a surprising relationship between certain pairs of algebraic symplectic manifolds, under which Hamiltonian automorphisms of one are identified with Poisson deformations of the other, and which is ultimately characterized by a Koszul-type equivalence between categories of modules over their filtered quantizations. I'll outline why such relationships are expected from physics in terms of three dimensional mirror symmetry, and rediscover the Coulomb branch construction of Braverman-Finkelberg-Nakajima from this perspective. We'll see that this explicitly constructs the symplectic dual of any variety which is presented as the symplectic reduction of a vector space by a reductive group.
 

Wed, 17 Nov 2021

10:00 - 12:00

Finite Element Exterior Calculus - Part 4

Kaibu Hu
(Oxford University)
Further Information

Location: VC Room

Structure: 4 x 2 hr Lectures

Part 1 - 27th October

Part 2 - 3rd November

Part 3 - 10th November

Part 4 - 17th November

Abstract

Many PDE models encode fundamental physical, geometric and topological structures. These structures may be lost in discretisations, and preserving them on the discrete level is crucial for the stability and efficiency of numerical methods. The finite element exterior calculus (FEEC) is a framework for constructing and analysing structure-preserving numerical methods for PDEs with ideas from topology, homological algebra and the Hodge theory. 

 

In this seminar, we present the theory and applications of FEEC. This includes analytic results (Hodge decomposition, regular potentials, compactness etc.), Hodge-Laplacian problems and their structure-preserving finite element discretisation, and applications in electromagnetism, fluid and solid mechanics. Knowledge on geometry and topology is not required as prerequisites.

 

References:

 

1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018) 

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006) 

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010) 

4. Arnold, D.N., Hu, K.: Complexes from complexes. Foundations of Computational Mathematics (2021)

Tue, 16 Nov 2021

16:00 - 17:00
C5

On C*-Rigidity for a Certain Class of Bieberbach Groups

Mat Antrobus, Dan Claydon, Jakub Curda, Jossy Russell
Abstract

Here we present the findings of our summer research project: an 8-week investigation of C*-Algebras. Our aim was to explore when a group is uniquely determined by its reduced group C*-algebra; i.e. when the group is C*-rigid. In particular, we applied techniques from topology, algebra, and analysis to prove C*-rigidity for a certain class of Bieberbach groups.

Tue, 16 Nov 2021

14:00 - 15:00
C5

TBA

George Cantwell
(Santa Fe Institute)
Abstract

TBA

Tue, 16 Nov 2021
14:00
L6

The singularity probability of a random symmetric matrix is exponentially small

Matthew Jenssen
Abstract

Let $A$ be drawn uniformly at random from the set of all $n \times n$ symmetric matrices with entries in $\{-1,1\}$. We show that $A$ is singular with probability at most $e^{-cn}$ for some absolute constant $c>0$, thereby resolving a well-known conjecture. This is joint work with Marcelo Campos, Marcus Michelen and Julian Sahasrabudhe.
 

Tue, 16 Nov 2021
14:00
L3

Homology torsion growth in finitely presented pro-p groups

Nikolay Nikolov
(Oxford University)
Abstract

Let $G$ be a finitely presented residually finite group. We are interested in the growth of size of the torsion of $H^{ab}$ as a function of $|G:H|$ where $H$ ranges over normal subgroups of finite index in $G$. It is easy to see that this grows at most exponentially in terms of $|G:H|$. Of particular interest is the case when $G$ is an arithmetic hyperbolic 3-manifold group and $H$ ranges over its congruence subgroups. Proving exponential lower bounds on the torsion appears to be difficult and in this talk I will focus on the situation of finitely presented pro-$p$ groups.

In contrast with abstract groups I will show that in finitely presented pro-$p$ groups torsion in the abelianizations can grow arbitrarily fast. The examples are rather 'large' pro-$p$ groups, in particular they are virtually Golod-Shafarevich. When we restrict to $p$-adic analytic groups the torsion growth is at most polynomial.

Tue, 16 Nov 2021

12:30 - 13:30
C5

Contact problems in glaciology

Gonzalo Gonzalez De Diego
(Mathematical Institute (University of Oxford))
Abstract

Several problems of great importance in the study of glaciers and ice sheets involve processes of attachment and reattachment of the ice from the bedrock. Consider, for example, an ice sheet sliding from the continent into the ocean, where it goes afloat. Another example is that of subglacial cavitation, a fundamental mechanism in glacial sliding where the ice detaches from the bedrock along the downstream area of an obstacle. Such problems are generally modelled as a viscous Stokes flow with a free boundary and contact boundary conditions. In this talk, I will present a framework for solving such problems numerically. I will start by introducing the mathematical formulation of these viscous contact problems and the challenges that arise when trying to approximate them numerically. I will then show how, given a stable scheme for the free boundary equation, one can build a penalty formulation for the viscous contact problem in such a way that the resulting algorithm remains stable and robust.

Mon, 15 Nov 2021

16:00 - 17:00

Measuring association with Wasserstein distances

JOHANNES C W WIESEL
(Columbia University (New York))
Abstract

 

Title: Measuring association with Wasserstein distances

Abstract: Let π ∈ Π(μ, ν) be a coupling between two probability measures μ and ν on a Polish space. In this talk we propose and study a class of nonparametric measures of association between μ and ν, which we call Wasserstein correlation coefficients. These coefficients are based on the Wasserstein distance between ν and the disintegration of π with respect to the first coordinate. We also establish basic statistical properties of this new class of measures: we develop a statistical theory for strongly consistent estimators and determine their convergence rate in the case of compactly supported measures μ and ν. Throughout our analysis we make use of the so-called adapted/bicausal Wasserstein distance, in particular we rely on results established in [Backhoff, Bartl, Beiglböck, Wiesel. Estimating processes in adapted Wasserstein distance. 2020]. Our approach applies to probability laws on general Polish spaces.

Mon, 15 Nov 2021

16:00 - 17:00
C1

Polynomial Pell equation

Nikoleta Kalaydzhieva
Abstract

In a world of polynomial Pell’s equations, where the integers are replaced by polynomials with complex coefficients, and its smallest solution is used to generate all other solutions $(u_{n},v_{n})$, $n\in\mathbb{Z}$. One junior number theory group will embark on a journey in search of the properties of the factors of $v_{n}(t)$. There will be Galois extensions, there will be estimations and of course there will be loglogs.

Mon, 15 Nov 2021
15:45
Virtual

Hyperbolic 5-manifolds that fiber over the circle

Bruno Martelli
(Universita di Pisa)
Abstract

We show that the existence of hyperbolic manifolds fibering over the circle is not a phenomenon confined to dimension 3 by exhibiting some examples in dimension 5. More generally, there are hyperbolic manifolds with perfect circle-valued Morse functions in all dimensions $n\le 5$. As a consequence, there are hyperbolic groups with finite-type subgroups that are not hyperbolic.

The main tool is Bestvina - Brady theory enriched with a combinatorial game recently introduced by Jankiewicz, Norin and Wise. These are joint works with Battista, Italiano, and Migliorini.

Mon, 15 Nov 2021
14:15
L4

TBA

Huaxin (Henry) Liu
(Oxford University)
Abstract

TBA

Mon, 15 Nov 2021
12:45
L4

Kondo line defect and affine oper/Gaudin correspondence

Jingxiang Wu
(Oxford)
Abstract

It is well-known that the spectral data of the Gaudin model associated to a finite semisimple Lie algebra is encoded by the differential data of certain flat connections associated to the Langlands dual Lie algebra on the projective line with regular singularities, known as oper/Gaudin correspondence. Recently, some progress has been made in understanding the correspondence associated with affine Lie algebras. I will present a physical perspective from Kondo line defects, physically describing a local impurity chirally coupled to the bulk 2d conformal field theory. The Kondo line defects exhibit interesting integrability properties and wall-crossing behaviors, which are encoded by the generalized monodromy data of affine opers. In the physics literature, this reproduces the known ODE/IM correspondence. I will explain how the recently proposed 4d Chern Simons theory provides a new perspective which suggests the possibility of a physicists’ proof. 

Fri, 12 Nov 2021

16:00 - 17:00
L1

North Meets South

Anna Parlak and Gill Grindstaff
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 12 Nov 2021

15:00 - 16:00
Virtual

Stable ranks for data analysis

Professor Martina Scolamiero
(KTH Royal Institute of Technology)
Abstract

Hierarchical stabilisation, allows us to define topological invariants for data starting from metrics to compare persistence modules. In this talk I will highlight the variety of metrics that can be constructed in an axiomatic way, via so called Noise Systems. The focus will then be on one invariant obtained through hierarchical stabilisation, the Stable Rank, which the TDA group at KTH has been studying in the last years. In particular I will address the problem of using this invariant on noisy and heterogeneous data. Lastly, I will illustrate the use of stable ranks on real data within a project on microglia morphology description, in collaboration with S. Siegert’s group, K. Hess and L. Kanari. 

Fri, 12 Nov 2021

14:00 - 15:00
C3

sl_2-triples in classical Lie algebras over fields of positive characteristic

Rachel Pengelly
(University of Birmingham)
Abstract

Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.

Fri, 12 Nov 2021

14:00 - 15:00
L3

Tools and approaches to build and analyze multiscale computational models in biology -TB as a case study

Prof Denise Kirschner
(Department of Microbiology and Immunology University of Michigan Medical Schoo)
Abstract

In this talk, I will give an overview of our multi-scale models that we have developed to study a number of aspects of the immune response to infection.  Scales that we explore range from molecular to the whole-host scale.  We are also able to study virtual populations and perform simulated clinical trials. We apply these approaches to study Tuberculosis, the disease caused by inhalation of the bacteria, Mycobacterium tuberculosis. It has infected 2 billion people in the world today, and kills 1-2 million people each year, even more than COVID-19. Our goal is to aid in understanding infection dynamics, treatment and vaccines to improve outcomes for this global health burden. I will discuss our frameworks for multi-scale modeling, and the analysis tools and statistical approaches that we have honed to better understand different outcomes at different scales.

Thu, 11 Nov 2021

16:00 - 17:00
L5

Approximation of mean curvature flow with generic singularities by smooth flows with surgery

Joshua Daniels-Holgate
(University of Warwick)
Abstract

We construct smooth flows with surgery that approximate weak mean curvature flows with only spherical and neck-pinch singularities. This is achieved by combining the recent work of Choi-Haslhofer-Hershkovits, and Choi-Haslhofer-Hershkovits-White, establishing canonical neighbourhoods of such singularities, with suitable barriers to flows with surgery. A limiting argument is then used to control these approximating flows. We demonstrate an application of this surgery flow by improving the entropy bound on the low-entropy Schoenflies conjecture.

Thu, 11 Nov 2021

16:00 - 17:00
L3

Online Stochastic Optimization of SDEs

JUSTIN SIRIGNANO
(University of Oxford)
Abstract

We develop a new online algorithm for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm optimizes over the parameters in the multi-dimensional SDE model in order to minimize the distance between the model's stationary distribution and the target statistics. We rigorously prove convergence for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the unbiased descent direction under the stationary distribution. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds on a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm. This presentation is based upon research with Ziheng Wang.
 

Thu, 11 Nov 2021
14:00
L3

Higher Form Symmetries: Part 2

Dewi Gould
(Oxford University)
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 11 Nov 2021
14:00
Virtual

A Fast, Stable QR Algorithm for the Diagonalization of Colleague Matrices

Vladimir Rokhlin
(Yale University)
Abstract

 

The roots of a function represented by its Chebyshev expansion are known to be the eigenvalues of the so-called colleague matrix, which is a Hessenberg matrix that is the sum of a symmetric tridiagonal matrix and a rank 1 perturbation. The rootfinding problem is thus reformulated as an eigenproblem, making the computation of the eigenvalues of such matrices a subject of significant practical interest. To obtain the roots with the maximum possible accuracy, the eigensolver used must posess a somewhat subtle form of stability.

In this talk, I will discuss a recently constructed algorithm for the diagonalization of colleague matrices, satisfying the relevant stability requirements.  The scheme has CPU time requirements proportional to n^2, with n the dimensionality of the problem; the storage requirements are proportional to n. Furthermore, the actual CPU times (and storage requirements) of the procedure are quite acceptable, making it an approach of choice even for small-scale problems. I will illustrate the performance of the algorithm with several numerical examples.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Thu, 11 Nov 2021

12:00 - 13:00
L3

(Timms) Simplified battery models via homogenisation

Travis Thompson & Robert Timms
(University of Oxford)
Further Information

Travis Thompson and Robert Timms are both OCIAM members. Travis is a post-doc working with Professor Alain Goriely in the Mathematics & Mechanics of Brain Trauma group. Robert Timms is a post-doc whose research focuses on the Mathematical Modelling of Batteries.

Abstract

 Mathematics for the mind: network dynamical systems for neurodegenerative disease pathology

Travis Thompson

Can mathematics understand neurodegenerative diseases?  The modern medical perspective on neurological diseases has evolved, slowly, since the 20th century but recent breakthroughs in medical imaging have quickly transformed medicine into a quantitative science.  Today, mathematical modeling and scientific computing allow us to go farther than observation alone.  With the help of  computing, experimental and data-informed mathematical models are leading to new clinical insights into how neurodegenerative diseases, such as Alzheimer's disease, may develop in the human brain.  In this talk, I will overview my work in the construction, analysis and solution of data and clinically-driven mathematical models related to AD pathology.  We will see that mathematical modeling and scientific computing are indeed indispensible for cultivating a data-informed understanding of the brain, AD and for developing potential treatments.

 

___________________________________________________________________________________________________

Simplified battery models via homogenisation  

Robert Timms

Lithium-ion batteries (LIBs) are one of the most popular forms of energy storage for many modern devices, with applications ranging from portable electronics to electric vehicles. Improving both the performance and lifetime of LIBs by design changes that increase capacity, reduce losses and delay degradation effects is a key engineering challenge. Mathematical modelling is an invaluable tool for tackling this challenge: accurate and efficient models play a key role in the design, management, and safe operation of batteries. Models of batteries span many length scales, ranging from atomistic models that may be used to predict the rate of diffusion of lithium within the active material particles that make up the electrodes, right through to models that describe the behaviour of the thousands of cells that make up a battery pack in an electric vehicle. Homogenisation can be used to “bridge the gap” between these disparate length scales, and allows us to develop computationally efficient models suitable for optimising cell design.

Wed, 10 Nov 2021

16:00 - 17:00
C5

Orbifolds - more than just spaces

Christoph Weis
(University of Oxford)
Abstract

Orbifolds are a generalisation of manifolds which allow group actions to enter the picture. The most basic examples of orbifolds are quotients of manifolds by (non-free) finite group actions.
I will give an introduction to orbifolds, recalling a number of philosophically different but mathematically equivalent definitions. For starters, I will try to convince you that "a space locally modelled on a quotient of R^n by a finite group" is misleading. I will draw many pictures of orbifolds, make the connection to complexes of groups, and explain the definition of a map of orbifolds. In the process, I hope to demystify the definition of the orbifold fundamental group, the orbifold Euler characteristic and orbifold cohomology.