Mon, 27 Jun 2022

12:45 - 13:45
L3

Marginal quenches and drives in Tomonaga-Luttinger liquids/free boson CFTs

Apoorv Tivari
(Stockholm)
Abstract

I will discuss the free compact boson CFT thrown out of equilibrium by marginal deformations, modeled by quenching or periodically driving the compactification radius of the free boson between two different values. All the dynamics will be shown to be crucially dependent on the ratio of the compactification radii via the Zamolodchikov distance in the space of marginal deformations. I will present various exact analytic results for the Loschmidt echo and the time evolution of energy density for both the quench and the periodic drive. Finally, I will present a non-perturbative computation of the  Rényi divergence, an information-theoretic distance measure, between two marginally deformed thermal density matrices.

 

The talk will be based on the recent preprint: arXiv:2206.11287

Mon, 27 Jun 2022 09:00 -
Fri, 22 Jul 2022 17:00
Mathematical Institute, Ground and Mezzanine levels

All we ever wanted was everything / 24.02.22 (for Ukraine)

Andy Bullock
Further Information

On June 27th, in the Reception area of the Mathematical Institute, Oxford artist Andy Bullock unveiled his most ambitious knot sculpture to date, a large floor-based work titled ‘All we ever wanted was everything / 24.02.22 (for Ukraine)’ constructed using 70 metres of metal trunking. As with all his knot sculptures they often reference issues of complexity with situations and people, the personal and interpersonal; focusing on what it means to be human.

In a first for the artist, Bullock will be inviting members of the recently arrived Ukrainian refugee community to contribute to the artwork by incorporating items of personal relevance. Bullock is reaching out to Oxfordshire’s Ukrainian community in a collaboration with Yulia Astasheva, a recent arrival herself from the Dnipropetrovsk region, where she still has close family living only miles from the Russian-occupied region.

The idea for the work came initially from a commission from Oxford Mathematics for Bullock to create an exhibition of his maths-related painting, photography and sculpture to be open to the public this summer. The core of his fine art master’s degree show last year was a creative examination and exploration of the topological subject of knot theory, and in particular the work of Clifford Hugh Dowker (1912-82) an eminent mathematician whose work is still studied today. “I find a poetic beauty in the mathematics I researched even though my understanding of the subject is virtually nil” said Bullock. “My final dissertation for my master’s degree examined the similarities in thought of mathematicians working in these areas and that of artists working in a more conceptual arena”.

In the lower ground floor space of the building there is an exhibition of some of Andy Bullock’s ‘knot variation’ paintings and photographs and a display of original handwritten manuscripts from Dowker’s personal archive alongside Andy's own sketchbooks, allowing an insight into the respective processes of mathematician and artist.

For further information:

Andy Bullock - @email - 07582 526957 - www.bullockstudio.com

Yulia Astasheva - @email

Tue, 21 Jun 2022

16:30 - 17:30
C1

Amenable actions and purely infinite crossed products

Julian Kranz
(University of Münster)
Abstract

Since the completion of the Elliott classification programme it is an important question to ask which C*-algebras satisfy the assumptions of the classification theorem. We will ask this question for the case of crossed-product C*-algebras associated to actions of nonamenable groups and focus on two extreme cases: Actions on commutative C*-algebras and actions on simple C*-algebras. It turns out that for a large class of nonamenable groups, classifiability of the crossed product is automatic under the minimal assumptions on the action. This is joint work with E. Gardella, S. Geffen, P. Naryshkin and A. Vaccaro. 

Tue, 21 Jun 2022

14:00 - 15:00
C6

Sequential Motifs in Observed Walks

Timothy LaRock
(Mathematical Institute (University of Oxford))
Abstract

The structure of complex networks can be characterized by counting and analyzing network motifs, which are small graph structures that occur repeatedly in a network, such as triangles or chains. Recent work has generalized motifs to temporal and dynamic network data. However, existing techniques do not generalize to sequential or trajectory data, which represents entities walking through the nodes of a network, such as passengers moving through transportation networks. The unit of observation in these data is fundamentally different, since we analyze observations of walks (e.g., a trip from airport A to airport C through airport B), rather than independent observations of edges or snapshots of graphs over time. In this work, we define sequential motifs in trajectory data, which are small, directed, and sequenced-ordered graphs corresponding to patterns in observed sequences. We draw a connection between counting and analysis of sequential motifs and Higher-Order Network (HON) models. We show that by mapping edges of a HON, specifically a kth-order DeBruijn graph, to sequential motifs, we can count and evaluate their importance in observed data, and we test our proposed methodology with two datasets: (1) passengers navigating an airport network and (2) people navigating the Wikipedia article network. We find that the most prevalent and important sequential motifs correspond to intuitive patterns of traversal in the real systems, and show empirically that the heterogeneity of edge weights in an observed higher-order DeBruijn graph has implications for the distributions of sequential motifs we expect to see across our null models.

ArXiv link: https://arxiv.org/abs/2112.05642

Tue, 21 Jun 2022

14:00 - 15:00
L6

The orbit method and normality of closures of nilpotent orbits

Dan Barbasch
(Cornell University, USA)
Abstract

The work of Kraft-Procesi classifies closures of nilpotent orbits that are normal in the cases of classical complex Lie algebras. Subsequent work of Ranee Brylinsky combines this work with the Theta correspondence as defined by Howe to attach a representation of the corresponding complex group. It provides a quantization of the closure of a nilpotent orbit. In joint work with Daniel Wong, we carry out a detailed analysis of these representations viewed as (\g,K)-modules of the complex group viewed as a real group. One consequence is a "representation theoretic" proof of the classification of Kraft-Procesi.

Mon, 20 Jun 2022
15:30
L5

Coxeter groups acting on CAT(0) cube complexes

Michah Sageev
Abstract

We will give a general overview of how one gets groups to act on CAT(0) cube complexes, how compatible such actions are and how this plays out in the setting of Coxeter groups.

 

Mon, 20 Jun 2022

12:45 - 13:45
L4

Large N Partition Functions, Holography, and Black Holes

Nikolay Bobev
Abstract

I will discuss the large N behavior of partition functions of the ABJM theory on compact Euclidean manifolds. I will pay particular attention to the S^3 free energy and the topologically twisted index for which I will present closed form expressions valid to all order in the large N expansion. These results have important implications for holography and the microscopic entropy counting of AdS_4 black holes which I will discuss. I will also briefly discuss generalizations to other SCFTs arising from M2-branes.

Fri, 17 Jun 2022

16:00 - 17:00
L5

Defect Central Charges

Adam Chalabi
(Southampton University)
Abstract

Conformal defects can be characterised by their contributions to the Weyl anomaly. The coefficients of these terms, often called defect central charges, depend on the particular defect insertion in a given conformal field theory. I will review what is currently known about defect central charges across dimensions, and present novel results. I will discuss many examples where they can be computed exactly without requiring any approximations or limits. Particular emphasis will be placed on recently developed tools for superconformal defects as well as defects in free theories.

Fri, 17 Jun 2022

14:00 - 17:00
Large Lecture Theatre, Department of Statistics, University of Oxford

CDT in Mathematics of Random Systems June Workshop 2022

Ziheng Wang, Professor Ian Melbourne, Dr Sara Franceschelli
Further Information

Please contact @email for remote viewing details

Abstract

2:00 Ziheng Wang, EPSRC CDT in Mathematics of Random Systems Student

Continuous-time stochastic gradient descent for optimizing over the stationary distribution of stochastic differential equations

Abstract: We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using a stochastic estimate for the gradient of the stationary distribution. The gradient estimate satisfies an SDE and is simultaneously updated, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of our online algorithm for dissipative SDE models and present numerical results for other nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm.

2:45 Ian Melbourne,  Professor of Mathematics, University of Warwick

Interpretation of stochastic integrals, and the Levy area

Abstract: An important question in stochastic analysis is the appropriate interpretation of stochastic integrals. The classical Wong-Zakai theorem gives sufficient conditions under which smooth integrals converge to Stratonovich stochastic integrals. The conditions are automatic in one-dimension, but in higher dimensions it is necessary to take account of corrections stemming from the Levy area. The first part of the talk covers work with Kelly 2016, where we justified the Levy area correction for large classes of smooth systems, bypassing any stochastic modelling assumptions. The second part of the talk addresses a much less studied question: is the Levy area zero or nonzero for systems of physical interest, eg Hamiltonian time-reversible systems? In recent work with Gottwald, we classify (and clarify) the situations where such structure forces the Levy area to vanish. The conclusion of our work is that typically the Levy area correction is nonzero.

3:45 Break

4:15 Sara Franceschelli, Associate Professor,  École Normale Supérieure de Lyon

When is a model is a good model? Epistemological perspectives on mathematical modelling

When a model is a good model? Must it represent a specific target system? Allow to make predictions? Provide an explanation for observed behaviors?  After a brief survey of general epistemological questions on modelling, I will consider examples of mathematical modelling in physics and biology from the perspective of dynamical systems theory. I will first show that even if it has been little noticed by philosophers, dynamical systems theory itself as a mathematical theory has been a source of questions and criteria in order to assess the goodness of a model (notions of stability, genericity, structural stability). I will then discuss the theoretical fruitfulness of arguments of (in)stability in the mathematical modelling of morphogenesis.

 

Fri, 17 Jun 2022

14:00 - 15:00
L6

Data-driven early detection of potential high risk SARS-CoV-2 variants

Dr Marcin J. Skwark
(InstaDeep)
Abstract

Recent advances in Deep Learning have enabled us to explore new application domains in molecular biology and drug discovery - including those driven by complex processes that defy analytical modelling.  However, despite the combined forces of increased data, improving compute resources and continuous algorithmic innovation all bringing previously intractable problems into the realm of possibility, many advances are yet to make a tangible impact for life science discovery.  In this talk, Dr Marcin J. Skwark will discuss the challenge of bringing machine learning innovation to tangible real-world impact.  Following a general introduction of the topic, as well as newly available methods and data, he will focus on the modelling of COVID-19 variants and, in particular, the DeepChain Early Warning System (EWS) developed by InstaDeep in collaboration with BioNTech.  With thousands of new, possibly dangerous, SARS-CoV-2 variants emerging each month worldwide, it is beyond humanities combined capacity to experimentally determine the immune evasion and transmissibility characteristics of every one.  EWS builds on an experimentally tested AI-first computational biology platform to evaluate new variants in minutes, and is capable of risk monitoring variant lineages in near real-time.  This is done by combining an AI-driven protein structure prediction framework with large, spike protein sequence-oriented Transformer models to allow for rapid simulation-free assessment of the immune escape risk and expected fitness of new variants, conditioned on the current state of the world.  The system has been extensively validated in cooperation with BioNTech, both in terms of host cell infection propensity (including experimental assays of receptor binding affinity), and immune escape (pVNT assays with monoclonal antibodies and real-life donor sera). In these assessments, purely unsupervised, data-first methods of EWS have shown remarkable accuracy. EWS flags and ranks all but one of the SARS-CoV-2 Variants of Concern (Alpha, Beta, Gamma, Delta… Omicron), discriminates between subvariants (e.g. BA.1/BA.2/BA.4 etc. distinction) and for most of the adverse events allows for proactive response on the day of the observation. This allows for appropriate response on average six weeks before it is possible for domain experts using domain knowledge and epidemiological data. The performance of the system, according to internal benchmarks, improves with time, allowing for example for supporting the decisions on the emerging Omicron subvariants on the first days of their occurrence. EWS impact has been notable in general media [2, 3] for the system's applicability to a novel problem, ability to derive generalizable conclusions from unevenly distributed, sparse and noisy data, to deliver insights which otherwise necessitate long and costly experimental assays.

Fri, 17 Jun 2022

14:00 - 15:00
L4
Fri, 17 Jun 2022

10:00 - 11:00
L4

Silt build up at Peel Ports locks

David Porter (Carbon Limiting Technologies), Chris Breward, Daniel Alty (Peel Ports; joining remotely)
(Peel Ports)
Abstract

Peel Ports operate a number of locks that allow ships to enter and leave the port. The lock gates comprise a single caisson structure which blocks the waterway when closed and retracts into the dockside as the gate opens. Build up of silt ahead of the opening lock gate can prevent it from fully opening or requiring excessive power to move. If the lock is not able to fully open, ships are unable to enter the port, leading to significant operational impacts for the whole port. Peel ports are interested in understanding, and mitigating, this silt build up. 

Thu, 16 Jun 2022

16:00 - 17:00
L4

Ax-Schanuel and exceptional integrability

Jonathan Pila
(University of Oxford)
Abstract

In joint work with Jacob Tsimerman we study when the primitive
of a given algebraic function can be constructed using primitives
from some given finite set of algebraic functions, their inverses,
algebraic functions, and composition. When the given finite set is just {1/x}
this is the classical problem of "elementary integrability".
We establish some results, including a decision procedure for this problem.

Thu, 16 Jun 2022

14:00 - 15:00
L5

Recent results on finite element methods for incompressible flow at high Reynolds number

Erik Burman
(University College London)
Abstract

The design and analysis of finite element methods for high Reynolds flow remains a challenging task, not least because of the difficulties associated with turbulence. In this talk we will first revisit some theoretical results on interior penalty methods using equal order interpolation for smooth solutions of the Navier-Stokes’ equations at high Reynolds number and show some recent computational results for turbulent flows.

Then we will focus on so called pressure robust methods, i.e. methods where the smoothness of the pressure does not affect the upper bound of error estimates for the velocity of the Stokes’ system. We will discuss how convection can be stabilized for such methods in the high Reynolds regime and, for the lowest order case, show an interesting connection to turbulence modelling.

 

Thu, 16 Jun 2022

14:00 - 15:00
L2

Factorization in AdS/CFT

Carmen Jorge Diaz
((Oxford University))
Abstract
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome
Thu, 16 Jun 2022

12:00 - 13:00
L2

Repulsive Geometry

Keenan Crane
(Carnegie Mellon Univeristy, School of Computer Science)
Further Information

 

Keenan Crane is the Michael B. Donohue Associate Professor in the School of Computer Science at Carnegie Mellon University, and a member of the Center for Nonlinear Analysis in the Department of Mathematical Sciences.  He is a Packard Fellow and recipient of the NSF CAREER Award, was a Google PhD Fellow in the Department of Computing and Mathematical Sciences at Caltech, and was an NSF Mathematical Postdoctoral Research Fellow at Columbia University.  His work applies insights from differential geometry and computer science to develop fundamental algorithms for working with real-world geometric data.  This work has been used in production at Fortune 500 companies, and featured in venues such as Communications of the ACM and Notices of the AMS, as well as in the popular press through outlets such as WIRED, Popular Mechanics, National Public Radio, and Scientific American.

Abstract

Numerous applications in geometric, visual, and scientific computing rely on the ability to nicely distribute points in space according to a repulsive potential.  In contrast, there has been relatively little work on equidistribution of higher-dimensional geometry like curves and surfaces—which in many contexts must not pass through themselves or each other.  This talk explores methods for optimization of curve and surface geometry while avoiding (self-)collision. The starting point is the tangent-point energy of Buck & Orloff, which penalizes pairs of points that are close in space but distant with respect to geodesic distance. We develop a discretization of this energy, and introduce a novel preconditioning scheme based on a fractional Sobolev inner product.  We further accelerate this scheme via hierarchical approximation, and describe how to incorporate into a constrained optimization framework. Finally, we explore how this machinery can be applied to problems in mathematical visualization, geometric modeling, and geometry processing.

 

 

Wed, 15 Jun 2022
14:00
L5

The heterotic $G_2$ system and coclosed $G_2$-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
(Oxford)
Abstract

When considering compatifications of heterotic string theory down to 3D, the heterotic $G_2$ system arises naturally. It is a system for both geometric fields and gauge fields over a manifold with a $G_2$-structure. In particular, it asks for the $G_2$-structure to be coclosed. We will begin this talk defining this system and giving a description of the geometry of cohomogeneity one manifolds. Then, we will look for coclosed $G_2$-structures in the cohomogeneity one setting. We will end up by proving the existence of a family of coclosed $G_2$-structures which are invariant under a cohomogeneity one action of $\text{SU}(2)^2$ on certain seven-dimensional simply connected manifolds.

Tue, 14 Jun 2022

16:00 - 17:00
C1

Semifinite tracial ultraproducts

James Gabe
(University of Southern Denmark)
Abstract

One of the most important constructions in operator algebras is the tracial ultrapower for a tracial state on a C*-algebra. This tracial ultrapower is a finite von Neumann algebra, and it appears in seminal work of McDuff, Connes, and more recently by Matui-Sato and many others for studying the structure and classification of nuclear C*-algebras. I will talk about how to generalise this to unbounded traces (such as the standard trace on B(H)). Here the induced tracial ultrapower is not a finite von Neumann algebra, but its multiplier algebra is a semifinite von Neumann algebra.

Tue, 14 Jun 2022
15:30
Virtual

Co-associative fibrations of $G_{2}$ manifolds: foundations and speculations.

Simon Donaldson
(Imperial College London and SCGP)
Further Information

The talk will be online (Zoom). People who would like to attend the seminar can also meet in person in L3.

Abstract

The introduction to the talk will review basics of $G_{2}$ geometry in seven dimensions, and associative and co-associative submanifolds. In one part of the talk we will explain how fibrations with co-associative fibres, near the “adiabatic limit” when the fibres are very small,  give insights into various questions about moduli spaces of $G_{2}$ structures and singularity formation. This part is mostly speculative. In the other part of the talk we discuss some analysis questions which enter when setting up the foundations of this adiabatic theory. These can be seen as codimension 2 analogues of free boundary problems and related questions have arisen in a number of areas of differential geometry recently.

Tue, 14 Jun 2022

15:30 - 16:30
L6

Extreme eigenvalues of the Jacobi Ensembles

Brian Winn
(Loughborough University)
Abstract

The Jacobi Ensembles of random matrices have joint distribution of eigenvalues proportional to the integration measure in the Selberg integral. They can also be realised as the singular values of principal submatrices of random unitaries. In this talk we will review some old and new results concerning the distribution of the largest and smallest eigenvalues.

Tue, 14 Jun 2022

14:30 - 15:00

TBA

TBA
Tue, 14 Jun 2022

14:00 - 15:00
L4

Resolution of the Erdős-Sauer problem on regular subgraphs

Benny Sudakov
(ETH Zurich)
Abstract

In this talk we discuss solution of the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an $n$-vertex graph can have without containing a $k$-regular subgraph, for some fixed integer $k\geq 3$. We prove that any $n$-vertex graph with average degree at least $C_k\log\log n$ contains a $k$-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially
improves an old result of Pyber, who showed that average degree at least $C_k\log n$ is enough.

Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.

Joint work with Oliver Janzer

Tue, 14 Jun 2022

14:00 - 14:30
L5

The strain Hodge Laplacian and DGFEM for the incompatibility operator

Francis Aznaran
((Oxford University))
Abstract

Motivated by the physical relevance of many Hodge Laplace-type PDEs from the finite element exterior calculus, we analyse the Hodge Laplacian boundary value problem arising from the strain space in the linear elasticity complex, an exact sequence of function spaces naturally arising in several areas of continuum mechanics. We propose a discretisation based on the adaptation of discontinuous Galerkin FEM for the incompatibility operator $\mathrm{inc} := \mathrm{rot}\circ\mathrm{rot}$, using the symmetric-tensor-valued Regge finite element to discretise  the strain field; via the 'Regge calculus', this element has already been successfully applied to discretise another metric tensor, namely that arising in general relativity. Of central interest is the characterisation of the associated Sobolev space $H(\mathrm{inc};\mathbb{R}^{d\times d}_{\mathrm{sym}})$. Building on the pioneering work of van Goethem and coauthors, we also discuss promising connections between functional analysis of the $\mathrm{inc}$ operator and Kröner's theory of intrinsic elasticity in the presence of defects.

This is based on ongoing work with Dr Kaibo Hu.

Tue, 14 Jun 2022

14:00 - 15:00
L6

Invariable generation and totally deranged elements of simple groups

Scott Harper
(Bristol)
Abstract

By a classical theorem of Jordan, every faithful transitive action of a nontrivial finite group admits a derangement (an element with no fixed points). More recently, the existence of derangements with additional properties has attracted much attention, especially for primitive actions of almost simple groups. Surprisingly, there exist almost simple groups with elements that are derangements in every faithful primitive action; we say that these elements are totally deranged. I'll talk about ongoing work to classify the totally deranged elements of almost simple groups, and I'll mention how this solves a question of Garzoni about invariable generating sets for simple groups.