Fri, 21 Jun 2019

16:00 - 17:00
L1

North meets South colloquium

Aden Forrow and Paul Ziegler
Abstract

Aden Forrow
Optimal transport and cell differentiation

Abstract
Optimal transport is a rich theory for comparing distributions, with both deep mathematics and application ranging from 18th century fortification planning to computer graphics. I will tie its mathematical story to a biological one, on the differentiation of cells from pluripotency to specialized functional types. First the mathematics can support the biology: optimal transport is an apt tool for linking experimental samples across a developmental time course. Then the biology can inspire new mathematics: based on the branching structure expected in differentiation pathways, we can find a regularization method that dramatically improves the statistical performance of optimal transport.

Paul Ziegler
Geometry and Arithmetic

Abstract
For a family of polynomials in several variables with integral coefficients, the Weil conjectures give a surprising relationship between the geometry of the complex-valued roots of these polynomials and the number of roots of these polynomials "modulo p". I will give an introduction to this circle of results and try to explain how they are used in modern research.
 

Fri, 21 Jun 2019

15:30 - 16:00
N3.12

Smoothness of Persistence

Jacob Leygonie
(Oxford University)
Abstract

We can see the simplest setting of persistence from a functional point of view: given a fixed finite simplicial complex, we have the barcode function which, given a filter function over this complex, returns the corresponding persistent diagram. The bottleneck distance induces a topology on the space of persistence diagrams, and makes the barcode function a continuous map: this is a consequence of the stability Theorem. In this presentation, I will present ongoing work that seeks to deepen our understanding of the analytic properties of the barcode function, in particular whether it can be said to be smooth. Namely, if we smoothly vary the filter function, do we get smooth changes in the resulting persistent diagram? I will introduce a notion of differentiability/smoothness for barcode valued maps, and then explain why the barcode function is smooth (but not everywhere) with respect to the choice of filter function. I will finally explain why these notions are of interest in practical optimisation/learning situations. 

Fri, 21 Jun 2019

15:00 - 15:30
N3.12

Outlier Robust Subsampling Techniques for Persistent Homology

Bernadette Stolz-Pretzer
(Oxford University)
Abstract

The amount and complexity of biological data has increased rapidly in recent years with the availability of improved biological tools. When applying persistent homology to large data sets, many of the currently available algorithms however fail due to computational complexity preventing many interesting biological applications. De Silva and Carlsson (2004) introduced the so called Witness Complex that reduces computational complexity by building simplicial complexes on a small subset of landmark points selected from the original data set. The landmark points are chosen from the data either at random or using the so called maxmin algorithm. These approaches are not ideal as the random selection tends to favour dense areas of the point cloud while the maxmin algorithm often selects outliers as landmarks. Both of these problems need to be addressed in order to make the method more applicable to biological data. We study new ways of selecting landmarks from a large data set that are robust to outliers. We further examine the effects of the different subselection methods on the persistent homology of the data.

Fri, 21 Jun 2019

14:00 - 15:00
L2

Personalised predictive modelling for transcatheter mitral valve replacement

Dr Adelaide De Vecchi
(Department of Biomedical Engineering King’s College London)
Abstract

Mitral regurgitation is one of the most common valve diseases in the UK and contributes to 50% of the transcatheter mitral valve replacement (TMVR) procedures with bioprosthetic valves. TMVR is generally performed in frailer, older patients unlikely to tolerate open-heart surgery or further interventions. One of the side effects of implanting a bioprosthetic valve is a condition known as left ventricular outflow obstruction, whereby the implanted device can partially obstruct the outflow of blood from the left ventricle causing high flow resistance. The ventricle has then to pump more vigorously to provide adequate blood supply to the circulatory system and becomes hypertrophic. This ultimately results in poor contractility and heart failure.
We developed personalised image-based models to characterise the complex relationship between anatomy, blood flow, and ventricular function both before and after TMVR. The model prediction provides key information to match individual patient and device size, such as postoperative changes in intraventricular pressure gradients and blood residence time. Our pilot data from a cohort of 7 TMVR patients identified a correlation between the degree of outflow obstruction and the deterioration of ventricular function: when approximately one third of the outflow was obstructed as a result of the device implantation, significant increases in the flow resistance and the average time spent by the blood inside the ventricle were observed, which are in turn associated with hypertrophic ventricular remodelling and blood stagnation, respectively. Currently, preprocedural planning for TMVR relies largely on anecdotal experience and standard anatomical evaluations. The haemodynamic knowledge derived from the models has the potential to enhance significantly pre procedural planning and, in the long term, help develop a personalised risk scoring system specifically designed for TMVR patients.
 

Fri, 21 Jun 2019

14:00 - 15:30
L6

Dynamically consistent parameterization of mesoscale eddies

Dr. Pavel Berloff
(Imperial College London)
Abstract

This work aims at developing new approach for parameterizing mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. These effects are often modelled as some diffusion process or a stochastic forcing, and the proposed approach is implicitly related to the latter category. The idea is to approximate transient eddy flux divergence in a simple way, to find its actual dynamical footprints by solving a simplified but dynamically relevant problem, and to relate the ensemble of footprints to the large-scale flow properties.

Thu, 20 Jun 2019

16:00 - 17:00
L6

Explicit Non-Abelian Chabauty via Motivic Periods

David Corwin
(UC Berkeley)
Abstract

We report on a line of work initiated by Dan-Cohen and Wewers and continued by Dan-Cohen and the speaker to explicitly compute the zero loci arising in Kim's non-abelian Chabauty's method. We explain how this works, an important step of which is to compute bases of a certain motivic Hopf algebra in low degrees. We will summarize recent work by Dan-Cohen and the speaker, extending previous computations to $\mathbb{Z}[1/3]$ and proposing a general algorithm for solving the unit equation. Many of the methods in the more recent work are inspired by recent ideas of Francis Brown. Finally, we indicate future work, in which we hope to use elliptic motivic periods to explicitly compute points on punctured elliptic curves and beyond.

Thu, 20 Jun 2019
16:00
C4

What is Arakelov Geometry?

Esteban Gomezllata Marmolejo
(Oxford University)
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Araklev theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

Thu, 20 Jun 2019

16:00 - 17:30
L2

A generic construction for high order approximation schemes of semigroups using random grids

Aurélien Alfonsi
(Ecole des Ponts ParisTech)
Abstract

Our aim is to construct high order approximation schemes for general 
semigroups of linear operators $P_{t},t \ge 0$. In order to do it, we fix a time 
horizon $T$ and the discretization steps $h_{l}=\frac{T}{n^{l}},l\in N$ and we suppose
that we have at hand some short time approximation operators $Q_{l}$ such
that $P_{h_{l}}=Q_{l}+O(h_{l}^{1+\alpha })$ for some $\alpha >0$. Then, we
consider random time grids $\Pi (\omega )=\{t_0(\omega )=0<t_{1}(\omega 
)<...<t_{m}(\omega )=T\}$ such that for all $1\le k\le m$, $t_{k}(\omega 
)-t_{k-1}(\omega )=h_{l_{k}}$ for some $l_{k}\in N$, and we associate the approximation discrete 
semigroup $P_{T}^{\Pi (\omega )}=Q_{l_{n}}...Q_{l_{1}}.$ Our main result is the 
following: for any approximation order $\nu $, we can construct random grids $\Pi_{i}(\omega )$ and coefficients 
$c_{i}$, with $i=1,...,r$ such that $P_{t}f=\sum_{i=1}^{r}c_{i} E(P_{t}^{\Pi _{i}(\omega )}f(x))+O(n^{-\nu})$
with the expectation concerning the random grids $\Pi _{i}(\omega ).$ 
Besides, $Card(\Pi _{i}(\omega ))=O(n)$ and the complexity of the algorithm is of order $n$, for any order
of approximation $\nu$. The standard example concerns diffusion 
processes, using the Euler approximation for $Q_l$.
In this particular case and under suitable conditions, we are able to gather the terms in order to produce an estimator of $P_tf$ with 
finite variance.
However, an important feature of our approach is its universality in the sense that
it works for every general semigroup $P_{t}$ and approximations.  Besides, approximation schemes sharing the same $\alpha$ lead to
the same random grids $\Pi_{i}$ and coefficients $c_{i}$. Numerical illustrations are given for ordinary differential equations, piecewise 
deterministic Markov processes and diffusions.

Thu, 20 Jun 2019

16:00 - 17:30
L3

Levitating drops in Leidenfrost state

Dr. Benjamin Sobac
(Universite Libre de Bruxelles)
Abstract

When a liquid drop is deposited over a solid surface whose temperature is sufficiently above the boiling point of the liquid, the drop does not experience nucleate boiling but rather levitates over a thin layer of its own vapor. This is known as the Leidenfrost effect. Whilst highly undesirable in certain cooling applications, because of a drastic decrease of the energy transferred between the solid and the evaporating liquid due to poor heat conductivity of the vapor, this effect can be of great interest in many other processes profiting from this absence of contact with the surface that considerably reduces the friction and confers an extreme mobility on the drop. During this presentation, I hope to provide a good vision of some of the knowledge on this subject through some recent studies that we have done. First, I will present a simple fitting-parameter-free theory of the Leidenfrost effect, successfully validated with experiments, covering the full range of stable shapes, i.e., from small quasi-spherical droplets to larger puddles floating on a pocketlike vapor film. Then, I will discuss the end of life of these drops that appear either to explode or to take-off. Finally, I will show that the Leidenfrost effect can also be observed over hot baths of non-volatile liquids. The understanding of the latter situation, compare to the classical Leidenfrost effect on solid substrate, provides new insights on the phenomenon, whether it concerns levitation or its threshold.

Thu, 20 Jun 2019
14:00
L3

On integral representations of symmetric groups

Susanne Danz
(Katholische Universitat Eichstätt-Ingolstadt)
Abstract

Abstract:  As is well known, every rational representation of a finite group $G$ can be realized over $\mathbb{Z}$, that is, the corresponding $\mathbb{Q}G$-module $V$ admits a $\mathbb{Z}$-form. Although $\mathbb{Z}$-forms are usually far from being unique, the famous Jordan--Zassenhaus Theorem shows that there are only finitely many $\mathbb{Z}$-forms of any given $\mathbb{Q}G$-module, up to isomorphism. Determining the precise number of these isomorphism classes or even explicit representatives is, however, a hard task in general. In this talk we shall be concerned with the case where $G$ is the symmetric group $\mathfrak{S}_n$ and $V$ is a simple $\mathbb{Q}\mathfrak{S}_n$-module labelled by a hook partition. Building on work of Plesken and Craig we shall present some results as well as open problems concerning the construction of the
integral forms of these modules. This is joint work with Tommy Hofmann from Kaiserslautern.

Thu, 20 Jun 2019

14:00 - 15:00
L4

Overcoming the curse of dimensionality: from nonlinear Monte Carlo to deep artificial neural networks

Professor Arnulf Jentzen
(ETH Zurich)
Abstract

Partial differential equations (PDEs) are among the most universal tools used in modelling problems in nature and man-made complex systems. For example, stochastic PDEs are a fundamental ingredient in models for nonlinear filtering problems in chemical engineering and weather forecasting, deterministic Schroedinger PDEs describe the wave function in a quantum physical system, deterministic Hamiltonian-Jacobi-Bellman PDEs are employed in operations research to describe optimal control problems where companys aim to minimise their costs, and deterministic Black-Scholes-type PDEs are highly employed in portfolio optimization models as well as in state-of-the-art pricing and hedging models for financial derivatives. The PDEs appearing in such models are often high-dimensional as the number of dimensions, roughly speaking, corresponds to the number of all involved interacting substances, particles, resources, agents, or assets in the model. For instance, in the case of the above mentioned financial engineering models the dimensionality of the PDE often corresponds to the number of financial assets in the involved hedging portfolio. Such PDEs can typically not be solved explicitly and it is one of the most challenging tasks in applied mathematics to develop approximation algorithms which are able to approximatively compute solutions of high-dimensional PDEs. Nearly all approximation algorithms for PDEs in the literature suffer from the so-called "curse of dimensionality" in the sense that the number of required computational operations of the approximation algorithm to achieve a given approximation accuracy grows exponentially in the dimension of the considered PDE. With such algorithms it is impossible to approximatively compute solutions of high-dimensional PDEs even when the fastest currently available computers are used. In the case of linear parabolic PDEs and approximations at a fixed space-time point, the curse of dimensionality can be overcome by means of Monte Carlo approximation algorithms and the Feynman-Kac formula. In this talk we introduce new nonlinear Monte Carlo algorithms for high-dimensional nonlinear PDEs. We prove that such algorithms do indeed overcome the curse of dimensionality in the case of a general class of semilinear parabolic PDEs and we thereby prove, for the first time, that a general semilinear parabolic PDE with a nonlinearity depending on the PDE solution can be solved approximatively without the curse of dimensionality.

Thu, 20 Jun 2019

13:00 - 14:00
L3

Spectral methods for certain inverse problems on graphs and time series data

Mihai Cucuringu
(Statistics Oxford University)
Further Information

We study problems that share an important common feature: they can all be solved by exploiting the spectrum of their corresponding graph Laplacian. We first consider a classic problem in data analysis and machine learning, of establishing a statistical ranking of a set of items given a set of inconsistent and incomplete pairwise comparisons. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose least-squares solution can be approximated by either a spectral or a semidefinite programming relaxation, and consider an application to detecting leaders and laggers in financial multivariate time series data. An instance of the group synchronization problem over Z_2 with anchor information is broadly applicable to settings where one has available a sparse signal such as positive or negative news sentiment for a subset of nodes, and would like to understand how the available measurements propagate to the remaining nodes of the network. We also present a simple spectral approach to the well-studied constrained clustering problem, which captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. This line of work extends to the setting of clustering signed networks and correlation clustering, where the edge weights between the nodes of the graph may take either positive or negative values, for which we provide theoretical guarantees in the setting of a signed stochastic block model and numerical experiments for financial correlation matrices. Finally, we discuss a spectral clustering algorithm for directed graphs based on a complex-valued representation of the adjacency matrix, motivated by the application of extracting cluster-based lead-lag relationships in time series data.
 

Thu, 20 Jun 2019

12:00 - 13:00
L4

On well posedness of stochastic mass critical NLS

Chenjie Fan
(University of Chicago)
Abstract

We will discuss the similarity and difference between deterministic and stochastic NLS. Different notions (or possible formulations) of local solutions will also be discussed. We will also present a global well posedness result for stochastic mass critical NLS. Joint work with Weijun Xu (Oxford)

Thu, 20 Jun 2019

09:30 - 10:00
N3.12

From knots to homotopy theory

Markus Szymik
(NTNU)
Further Information

Note: unusual time!

Abstract

Knots and their groups are a traditional topic of geometric topology. In this talk, I will explain how aspects of the subject can be approached as a homotopy theorist, rephrasing old results and leading to new ones. Part of this reports on joint work with Tyler Lawson.

Wed, 19 Jun 2019
16:00
C1

The spectrum of simplicial volume

Nicolaus Heuer
(Oxford University)
Abstract

Simplicial volume was first introduced by Gromov to study the minimal volume of manifolds. Since then it has emerged as an active research field with a wide range of applications. 

I will give an introduction to simplicial volume and describe a recent result with Clara Löh (University of Regensburg), showing that the set of simplicial volumes in higher dimensions is dense in $R^+$.

Tue, 18 Jun 2019

15:30 - 16:30
L3

Noncommutative geometry from generalized Kahler structures

Marco Gualtieri
(University of Toronto)
Abstract

After reviewing our recent description of generalized Kahler structures in terms of holomorphic symplectic Morita equivalence, I will describe how this can be used for explicit constructions of toric generalized Kahler metrics.  Then I will describe how these ideas, combined with concepts from geometric quantization, provide a new approach to noncommutative algebraic geometry.

Tue, 18 Jun 2019

14:30 - 15:00
L3

PathFinder: a toolbox for oscillatory quadrature

Andrew Gibbs
(KU Leuven)
Abstract

Highly oscillatory integrals arise in a range of wave-based problems. For example, they may occur when a basis for a boundary element has been enriched with oscillatory functions, or as part of a localised approximation to various short-wavelength phenomena. A range of contemporary methods exist for the efficient evaluation of such integrals. These methods have been shown to be very effective for model integrals, but may require expertise and manual intervention for
integrals with higher complexity, and can be unstable in practice.

The PathFinder toolbox aims to develop robust and fully automated numerical software for a large class of oscillatory integrals. In this talk I will introduce the method of numerical steepest descent (the technique upon which PathFinder is based) with a few simple examples, which are also intended to highlight potential causes for numerical instability or manual intervention. I will then explain the novel approaches that PathFinder uses to avoid these. Finally I will present some numerical examples, demonstrating how to use the toolbox, convergence results, and an application to the parabolic wave equation.

Tue, 18 Jun 2019

14:30 - 15:30
L6

Enumerating graphs and other discrete structures by degree sequence

Anita Liebenau
Further Information

How many d-regular graphs are there on n vertices? What is the probability that G(n,p) has a specific given degree sequence? 

Asymptotic formulae for the first question are known when d=o(\sqrt(n)) and when d= \Omega(n). More generally, asymptotic formulae are known for 
the number of graphs with a given degree sequence, for a range of degree sequences that is wide enough to deduce asymptotic formulae for the second 
question for p =o(1/o(\sqrt(n))) and p = Theta(1).  

McKay and Wormald showed that the formulae for the sparse case and the 
dense case can be cast into a common form, and then conjectured in 1990 and 1997 that the same formulae should hold for the gap range. A particular consequence of both conjectures is that the degree sequence of the random graph G(n,p) can be approximated by a sequence of n independent 
binomial variables Bin(n − 1, p'). 

In 2017, Nick Wormald and I proved both conjectures. In this talk I will describe the problem and survey some of the earlier methods to showcase the differences to our new methods. I shall also report on enumeration results of other discrete structures, such as bipartite graphs and hypergraphs, that are obtained by adjusting our methods to those settings. 

Tue, 18 Jun 2019

14:15 - 15:15
L4

The congruence subgroup problem for a family of branch groups

Rachel Skipper
(Lyon)
Abstract

A group acting on a regular rooted tree has the congruence subgroup property if every subgroup of finite index contains a level stabilizer. The congruence subgroup problem then asks to quantitatively describe the kernel of the surjection from the profinite completion to the topological closure as a subgroup of the automorphism group of the tree. We will study the congruence subgroup property for a family of branch groups whose construction generalizes that of the Hanoi Towers group, which models the game “The Towers of Hanoi".

 

Tue, 18 Jun 2019

14:00 - 14:30
L3

Improving the scalability of derivative-free optimisation for nonlinear least-squares problems

Lindon Roberts
(Oxford)
Abstract

In existing techniques for model-based derivative-free optimisation, the computational cost of constructing local models and Lagrange polynomials can be high. As a result, these algorithms are not as suitable for large-scale problems as derivative-based methods. In this talk, I will introduce a derivative-free method based on exploration of random subspaces, suitable for nonlinear least-squares problems. This method has a substantially reduced computational cost (in terms of linear algebra), while still making progress using few objective evaluations.

Tue, 18 Jun 2019

12:45 - 14:00
C3

Multi-armed bandit under uncertainty

Tanut Treetanthiploet
(Oxford University)
Abstract

In a robust decision, we are pessimistic toward our decision making when the probability measure is unknown. In particular, we optimise our decision under the worst case scenario (e.g. via value at risk or expected shortfall).  On the other hand, most theories in reinforcement learning (e.g. UCB or epsilon-greedy algorithm) tell us to be more optimistic in order to encourage learning. These two approaches produce an apparent contradict in decision making. This raises a natural question. How should we make decisions, given they will affect our short-term outcomes, and information available in the future?

In this talk, I will discuss this phenomenon through the classical multi-armed bandit problem which is known to be solved via Gittins' index theory under the setting of risk (i.e. when the probability measure is fixed). By extending this result to an uncertainty setting, we can show that it is possible to take into account both uncertainty and learning for a future benefit at the same time. This can be done by extending a consistent nonlinear expectation  (i.e. nonlinear expectation with tower property) through multiple filtrations.

At the end of the talk, I will present numerical results which illustrate how we can control our level of exploration and exploitation in our decision based on some parameters.
 

Tue, 18 Jun 2019
12:00
L3

Wilson-loop form-factors, a new duality

Dr Paul Heslop
(Durham)
Abstract

We find a new duality for form factors of lightlike Wilson loops in planar N=4 super-Yang-Mills theory. The duality maps a form factor involving an n-sided lightlike polygonal super-Wilson loop together with m external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to the gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analytic continuation from Minkowski to Euclidean space. We illustrate all of these subtleties explicitly in the simplest non-trivial NMHV-like case.

Tue, 18 Jun 2019

12:00 - 13:00
C4

Chasing memories

Anita Mehta
(Somerville College)
Abstract

Short- and long-term memories are distinguished by their forgettability. Most of what we perceive and store is lost rather quickly to noise, as new sensations replace older ones, while some memories last for as long as we live. Synaptic dynamics is key to the process of memory storage; in this talk I will discuss a few approaches we have taken to this problem, culminating in a model of synaptic networks containing both cooperative and competitive dynamics. It turns out that the competitionbetween synapses is key to the natural emergence of long-term memory in this model, as in reality.

References
​Mehta, Anita. "Storing and retrieving long-term memories: cooperation and competition in synaptic dynamics." Advances in Physics: X 3.1 (2018): 1480415.

Mon, 17 Jun 2019
15:45
L6

The Teichmüller TQFT volume conjecture for twist knots

Fathi Ben Aribi
(Geneva)
Abstract

(joint work with E. Piguet-Nakazawa)

In 2014, Andersen and Kashaev defined an infinite-dimensional TQFT from quantum Teichmüller theory. This Teichmüller TQFT is an invariant of triangulated 3-manifolds, in particular knot complements.

The associated volume conjecture states that the Teichmüller TQFT of an hyperbolic knot complement contains the volume of the knot as a certain asymptotical coefficient, and Andersen-Kashaev proved this conjecture for the first two hyperbolic knots.

In this talk I will present the construction of the Teichmüller TQFT and how we approached this volume conjecture for the infinite family of twist knots, by constructing new geometric triangulations of the knot complements.

No prerequisites in Quantum Topology are needed.

Mon, 17 Jun 2019

15:45 - 16:45
L3

Mathematical and computational challenges in interdisciplinary bioscience: efficient approaches for stochastic models of biological processes.

RUTH BAKER
(University of Oxford)
Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of data now being generated. Increasingly larger and more complicated processes are now being explored, including large signalling or gene regulatory networks, and the development, dynamics and disease of entire cells and tissues. As such, the mechanistic, mathematical models developed to interrogate these processes are also necessarily growing in size and complexity. These detailed models have the potential to provide vital insights where data alone cannot, but to achieve this goal requires meeting significant mathematical challenges. In this talk, I will outline some of these challenges, and recent steps we have taken in addressing them.

Mon, 17 Jun 2019

14:15 - 15:15
L3

Path Developments and Tail Asymptotics of Signature

XI GENG
(University of Melbourne)
Abstract

It is well known that a rough path is uniquely determined by its signature (the collection of global iterated path integrals) up to tree-like pieces. However, the proof the uniqueness theorem is non-constructive and does not give us information about how quantitative properties of the path can be explicitly recovered from its signature. In this talk, we examine the quantitative relationship between the local p-variation of a rough path and the tail asymptotics of its signature for the simplest type of rough paths ("line segments"). What lies at the core of the work a novel technique based on the representation theory of complex semisimple Lie algebras. 

This talk is based on joint work with Horatio Boedihardjo and Nikolaos Souris

Mon, 17 Jun 2019

14:15 - 15:15
L4

Bryant-Salamon metrics and coassociative fibrations

Jason Lotay
(Oxford)
Abstract

The first examples of complete holonomy G2 metrics were constructed by Bryant-Salamon and are thus of central importance in geometry, but also in physics, appearing for example in the work of Atiyah-Witten, Acharya-Witten and Acharya-Gukov.   I will describe joint work in progress with Spiro Karigiannis which realises Bryant-Salamon manifolds in dimension 7 as coassociative fibrations.  In particular, I will discuss the relationship of this study to gravitational instantons, conical singularities, and to recent work of Donaldson and Joyce-Karigiannis.

 

Fri, 14 Jun 2019

16:00 - 17:00
L1

Old and new on crystalline cohomology and the de Rham-Witt complex

Luc Illusie
(Université de Paris-Sud, Orsay)
Abstract

The subject of $p$-adic cohomologies is over fifty years old. Many new developments have recently occurred. I will mostly limit myself to discussing some pertaining to the de Rham-Witt complex. After recalling the historical background and the basic results, I will give an overview of the new approach of Bhatt, Lurie and Mathew.

Fri, 14 Jun 2019

15:00 - 16:00
N3.12

Multiparameter persistence vs parametrised persistence

Jeffrey Giansiracusa
(Swansea University)
Abstract

One of the key properties of 1-parameter persistent homology is that its output can entirely encoded in a purely combinatorial way via persistence diagrams or barcodes.  However, many applications of topological data analysis naturally present themselves with more than 1 parameter. Multiparameter persistence suggests itself as the natural invariant to use, but the problem here is that the moduli space of multiparameter persistence diagrams has a much more complicated structure and we lack a combinatorial diagrammatic description.  An alternative approach was suggested by work of Giansiracusa-Moon-Lazar, where they investigated calculating a series of 1-parameter persistence diagrams as the other parameter is varied. In this talk I will discuss work in progress to produce a refinement of their perspective, making use the Algebraic Stability Theorem for persistent homology and work of Bauer-Lesnick on induced matchings.

Fri, 14 Jun 2019

14:00 - 15:00
L2

Reactions, diffusion and volume exclusion in a heterogeneous system of interacting particles

Dr Maria Bruna
(Mathematical Institute University of Oxford)
Abstract


Cellular migration can be affected by short-range interactions between cells such as volume exclusion, long-range forces such as chemotaxis, or reactions such as phenotypic switching. In this talk I will discuss how to incorporate these processes into a discrete or continuum modelling frameworks. In particular, we consider a system with two types of diffusing hard spheres that can react (switch type) upon colliding. We use the method of matched asymptotic expansions to obtain a systematic model reduction, consisting of a nonlinear reaction-diffusion system of equations. Finally, we demonstrate how this approach can be used to study the effects of excluded volume on cellular chemotaxis. This is joint work with Dan Wilson and Helen Byrne.
 

Fri, 14 Jun 2019

12:00 - 13:00
L4

A neural network approach to SLV Calibration

Wahid Khosrawi
(ETH Zurich)
Abstract

 A central task in modeling, which has to be performed each day in banks and financial institutions, is to calibrate models to market and historical data. So far the choice which models should be used was not only driven by their capacity of capturing empirically the observed market features well, but rather by computational tractability considerations. Due to recent work in the context of machine learning, this notion of tractability has changed significantly. In this work, we show how a neural network approach can be applied to the calibration of (multivariate) local stochastic volatility models. We will see how an efficient calibration is possible without the need of interpolation methods for the financial data. Joint work with Christa Cuchiero and Josef Teichmann.

Fri, 14 Jun 2019

10:00 - 11:00
L2

Robust Identification of Drones and UAVs in the Air Space for Improving Public Safety and Security

Jahangir Mohammed
(Thales (Aveillant))
Abstract

The disruptive drone activity at airports requires an early warning system and Aveillant make a radar system that can do the job. The main problem is telling the difference between birds and drones where there may be one or two drones and 10s or 100s of birds. There is plenty of data including time series for how the targets move and the aim is to improve the discrimination capability of tracker using machine learning.

Specifically, the challenge is to understand whether there can be sufficient separability between birds and drones based on different features, such as flight profiles, length of the track, their states, and their dominance/correlation in the overall discrimination. Along with conventional machine learning techniques, the challenge is to consider how different techniques, such as deep neural networks, may perform in the discrimination task.

Fri, 14 Jun 2019

09:30 - 18:30
L3

19th Oxford Cambridge Applied Maths Meeting (aka The Woolly Owl)

Further Information

[[{"fid":"54202","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-square","data-delta":"1"}}]]

 

Thu, 13 Jun 2019

16:00 - 17:00
L6

Arakelov theory on degenerating curves

Gerd Faltings
(University of Bonn and MPIM)
Abstract

We compute the asymptotics of Arakelov functions if smooth curves degenerate to semistable singular curves. The motivation was to determine whether the delta function defines a metric on the boundary of moduli space. In fact things are slightly more complicated. The main result states that the asymptotics is mostly governed by the graph associated to the degeneration, with some subleties. The topic has been also treated by R. deJong and my student R. Wilms.

Thu, 13 Jun 2019
16:00
C4

The signature obstruction to finding characteristic classes for manifold bundles

Jan Steinebrunner
(Oxford University)
Abstract

A cohomology class on the diffeomorphism group Diff(M) of a manifold M

can be thought of as a characteristic class for smooth M-bundles.
I will survey a technique for producing examples of such classes,
and then explain how the signature (of 4-manifolds) provides an
obstruction to this technique in dimension 3.

I will define Miller-Morita-Mumford classes and explain how we can
think of them as coming from classes on the cobordism category.
Madsen and Weiss showed that for a surface S of genus g all cohomology
classes
of the mapping class group MCG(S) (of degree < 2(g-2)/3) are MMM-classes.
This technique has been successfully ported to higher even dimensions d= 2n,
but it cannot possibly work in odd dimensions:
a theorem of Ebert says that for d=3 all MMM-classes are trivial.
In the second part of my talk I will sketch a new proof of (a part of)
Ebert's theorem.
I first recall the definition of the signature sign(W) of a 4 manifold W,
and some of its properties, such as additivity with respect to gluing.
Using the signature and an idea from the world of 1-2-3-TQFTs,
I then go on to define a 'central extension' of the three dimensional
cobordism category.
This central extension corresponds to a 2-cocycle on the 3d cobordism
category,
and we will see that the construction implies that the associated MMM-class
has to vanish on all 3-dimensional manifold bundles.

Thu, 13 Jun 2019

16:00 - 17:30
L3

Multiscale Modelling of Tendon Mechanics

Dr Tom Shearer
(University of Manchester)
Abstract

Tendons are vital connective tissues that anchor muscle to bone to allow the transfer of forces to the skeleton. They exhibit highly non-linear viscoelastic mechanical behaviour that arises due to their complex, hierarchical microstructure, which consists of fibrous subunits made of the protein collagen. Collagen molecules aggregate to form fibrils with diameters of tens to hundreds of nanometres, which in turn assemble into larger fibres called fascicles with diameters of tens to hundreds of microns. In this talk, I will discuss the relationship between the three-dimensional organisation of the fibrils and fascicles and the macroscale mechanical behaviour of the tendon. In particular, I will show that very simple constitutive behaviour at the microscale can give rise to highly non-linear behaviour at the macroscale when combined with geometrical effects.

 

Thu, 13 Jun 2019
14:00
L3

Affine Hecke Algebras for p-adic classical groups, local Langlands correspondence and unipotent representations

Volker Heiermann
(Université d'Aix-Marseille)
Abstract

I will review the equivalence of categories of a Bernstein component of a p-adic classical group with the category of right modules over a certain affine Hecke algebra (with parameters) that I obtained previously. The parameters can be made explicit by the parametrization of supercuspidal representations of classical groups obtained by C. Moeglin, using methods of J. Arthur. Via this equivalence, I can show that the category of smooth complex representations of a quasisplit $p$-adic classical group and its pure inner forms is naturally decomposed into subcategories that are equivalent to the tensor product of categories of unipotent representations of classical groups (in the sense of G. Lusztig). All classical groups (general linear, orthogonal, symplectic and unitary groups) appear in this context.
 

Thu, 13 Jun 2019

14:00 - 15:00
L4

A structure-preserving finite element method for uniaxial nematic liquid crystals

Professor Ricardo Nochetto
(University of Maryland)
Abstract

The Landau-DeGennes Q-model of uniaxial nematic liquid crystals seeks a rank-one

traceless tensor Q that minimizes a Frank-type energy plus a double well potential

that confines the eigenvalues of Q to lie between -1/2 and 1. We propose a finite

element method (FEM) which preserves this basic structure and satisfies a discrete

form of the fundamental energy estimates. We prove that the discrete problem Gamma

converges to the continuous one as the meshsize tends to zero, and propose a discrete

gradient flow to compute discrete minimizers. Numerical experiments confirm the ability

of the scheme to approximate configurations with half-integer defects, and to deal with

colloidal and electric field effects. This work, joint with J.P. Borthagaray and S.

Walker, builds on our previous work for the Ericksen's model which we review briefly.

Thu, 13 Jun 2019

12:00 - 13:00
L4

On the scaling limit of Onsager's molecular model for liquid crystals

Yuning Liu
(NYU Shanghai)
Abstract

We study the small Deborah number limit of the Doi-Onsager equation for the dynamics of nematic liquid crystals. This is a Smoluchowski-type equation that characterizes the evolution of a number density function, depending upon both particle position and its orientation vector, which lies on the unit sphere. We prove that, in the low temperature regime, when the Deborah number tends to zero, the family of solutions with rough initial data near local equilibria will converge to a local equilibrium distribution prescribed by a weak solution of the harmonic map heat flow into the sphere. This flow is a special case of the gradient flow to the Oseen-Frank energy functional for nematic liquid crystals and the existence of its global weak solution was first obtained by Y.M Chen, using Ginzburg-Landau approximation.  The key ingredient of our result is to show the strong compactness of the family of number density functions and the proof relies on the strong compactness of the corresponding second moment (or the Q-tensor), a spectral decomposition of the linearized operator near the limiting local equilibrium distribution, as well as the energy dissipation estimates.  This is a joint work with Wei Wang in Zhejiang university.
 

Wed, 12 Jun 2019
16:00
C1

Groups with negative curvature

David Hume
(Oxford University)
Abstract

I will present a survey of commonly considered notions of negative curvature for groups, focused on generalising properties of Gromov hyperbolic groups.

Tue, 11 Jun 2019
16:00
C5

The momentum amplituhedron

Matteo Parisi
(Oxford)
Abstract

In this paper we define a new object, the momentum amplituhedron, which is the long sought-after positive geometry for tree-level scattering amplitudes in N=4 super Yang-Mills theory in spinor helicity space. Inspired by the construction of the ordinary amplituhedron, we introduce bosonized spinor helicity variables to represent our external kinematical data, and restrict them to a particular positive region. The momentum amplituhedron Mn,k is then the image of the positive Grassmannian via a map determined by such kinematics. The scattering amplitudes are extracted from the canonical form with logarithmic singularities on the boundaries of this geometry.

Tue, 11 Jun 2019

15:30 - 16:30
L4

Birational geometry of symplectic quotient singularities

Alastair Craw
(University of Bath)
Abstract

For a finite subgroup $G$ of $SL(2,C)$ and for $n \geq 1$,  the Hilbert scheme $X=Hilb^{[n]}(S)$ of $n$ points on the minimal resolution $S$ of the Kleinian singularity $C^2/G$ provides a crepant resolution of the symplectic quotient $C^{2n}/G_n$, where $G_n$ is the wreath product of $G$ with $S_n$. I'll explain why every projective, crepant resolution of $C^{2n}/G_n$ is a quiver variety, and why the movable cone of $X$ can be described in terms of an extended Catalan hyperplane arrangement of the root system associated to $G$ by John McKay. These results extend the algebro-geometric aspects of Kronheimer's hyperkahler description of $S$ to higher dimensions. This is joint work with Gwyn Bellamy.

Tue, 11 Jun 2019

14:30 - 15:00
L2

Integrated Approaches for Stochastic Chemical Kinetics

Pamela Burrage
(Queensland)
Abstract

In this talk I discuss how we can simulate stochastic chemical kinetics when there is a memory component. This can occur when there is spatial crowding within a cell or part of a cell, which acts to constrain the motion of the molecules which then in turn changes the dynamics of the chemistry. The counterpart of the Law of Mass Action in this setting is through replacing the first derivative in the ODE description of the Law of Mass Action by a time-­fractional derivative, where the time-­fractional index is between 0 and 1. There has been much discussion in the literature, some of it wrong, as to how we model and simulate stochastic chemical kinetics in the setting of a spatially-­constrained domain – this is sometimes called anomalous diffusion kinetics.

In this presentation, I discuss some of these issues and then present two (equivalent) ways of simulating fractional stochastic chemical kinetics. The key here is to either replace the exponential waiting time used in Gillespie’s SSA by Mittag-­Leffler waiting times (MacNamara et al. [2]), which have longer tails than in the exponential case. The other approach is to use some theory developed by Jahnke and Huisinga [1] who are able towrite down the underlying probability density function for any set of mono-­molecular chemical reactions (under the standard Law of Mass Action) as a convolution of either binomial probability density functions or binomial and Poisson probability density functions). We can then extend the Jahnke and Huisinga formulation through the concept of iterated Brownian Motion paths to produce exact simulations of the underlying fractional stochastic chemical process. We demonstrate the equivalence of these two approaches through simulations and also by computing the probability density function of the underlying fractional stochastic process, as described by the fractional chemical master equation whose solution is the Mittag-­Lefflermatrix function. This is computed based on a clever algorithm for computing matrix functions by Cauchy contours (Weideman and Trefethen [3]).

This is joint work with Manuel Barrio (University of Vallodolid, Spain), Kevin Burrage (QUT), Andre Leier (University of Alabama), Shev MacNamara(University of Technology Sydney)and T. Marquez-­Lago (University of Alabama).

[1]T. Jahnke and W. Huisinga, 2007, Solving the chemical master equation for monomolecular reaction systems analytically, J. Math. Biology 54, 1, 1—26.[2]S. MacNamara, B. Henry and W. McLean, 2017, Fractional Euler limits and their applications, SIAM J. Appl. Math. 77, 2, 447—469.[3]J.A.C. Weideman and L.N. Trefethen, 2007, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp. 76, 1341—1356.

Tue, 11 Jun 2019

14:00 - 14:30
L2

The Additive Congruential Random Number (ACORN) Generator - pseudo-random sequences that are well distributed in k-dimensions

Roy S Wikramaratna
(REAMC Limited)
Abstract

ACORN generators represents an approach to generating uniformly distributed pseudo-random numbers which is straightforward to implement for arbitrarily large order $k$ and modulus $M=2^{30t}$ (integer $t$). They give long period sequences which can be proven theoretically to approximate to uniformity in up to $k$ dimensions, while empirical statistical testing demonstrates that (with a few very simple constraints on the choice of parameters and the initialisation) the resulting sequences can be expected to pass all the current standard tests .

The standard TestU01 Crush and BigCrush Statistical Test Suites are used to demonstrate for ACORN generators with order $8≤k≤25$ that the statistical performance improves as the modulus increases from $2^{60}$ to $2^{120}$. With $M=2^{120}$ and $k≥9$, it appears that ACORN generators pass all the current TestU01 tests over a wide range of initialisations; results are presented that demonstrate the remarkable consistency of these results, and explore the limits of this behaviour.

This contrasts with corresponding results obtained for the widely-used Mersenne Twister MT19937 generator, which consistently failed on two of the tests in both the Crush and BigCrush test suites.

There are other pseudo-random number generators available which will also pass all the TestU01 tests. However, for the ACORN generators it is possible to go further: we assert that an ACORN generator might also be expected to pass any more demanding tests for $p$-dimensional uniformity that may be required in the future, simply by choosing the order $k>p$, the modulus $M=2^{30t}$ for sufficiently large $t$, together with any odd value for the seed and an arbitrary set of initial values. We note that there will be $M/2$ possible odd values for the seed, with each such choice of seed giving rise to a different $k$-th order ACORN sequence satisfying all the required tests.

This talk builds on and extends results presented at the recent discussion meeting on “Numerical algorithms for high-performance computational science” at the Royal Society London, 8-9 April 2019, see download link at bottom of web page http://acorn.wikramaratna.org/references.html.

Tue, 11 Jun 2019

12:00 - 13:00
C4

Graph Comparison via the Non-backtracking Spectrum

Andrew Mellor
(University of Oxford; Mathematical Institute)
Abstract

The comparison of graphs is a vitally important, yet difficult task which arises across a number of diverse research areas including biological and social networks. There have been a number of approaches to define graph distance however often these are not metrics (rendering standard data-mining techniques infeasible), or are computationally infeasible for large graphs. In this work, we define a new metric based on the spectrum of the non-backtracking graph operator and show that it can not only be used to compare graphs generated through different mechanisms but can reliably compare graphs of varying size. We observe that the family of Watts-Strogatz graphs lie on a manifold in the non-backtracking spectral embedding and show how this metric can be used in a standard classification problem of empirical graphs.

Tue, 11 Jun 2019

12:00 - 13:15
L4

Vacuum polarization on topological black holes

Elizabeth Winstanley
(Sheffield)
Abstract

The renormalized expectation value of the stress energy tensor (RSET) is an object of central importance in quantum field theory in curved space-time, but calculating this on black hole space-times is far from trivial.  The vacuum polarization (VP) of a quantum scalar field is computationally simpler and shares some features with the RSET.  In this talk we consider the properties of the VP for a massless, conformally coupled scalar field on asymptotically anti-de Sitter black holes with spherical, flat and hyperbolic horizons.  We focus on the effect of the different horizon curvature on the VP, and the role played by the boundary conditions far from the black hole.     

 

Mon, 10 Jun 2019
17:00
L6

Curve complexes of Artin groups and Borel-Serre bordifications of hyperplane arrangement complements

Michael Davis
(Ohio State University)
Abstract

This is a report on work in progress with Jingyin Huang. The complement of an arrangement of linear hyperplanes in a complex vector space has a natural “Borel-Serre bordification” as a smooth manifold with corners. Its universal cover is analogous to the Borel-Serre bordification of an arithmetic lattice acting on a symmetric space as well as to the Harvey bordification of Teichmuller space. In the first case the boundary of this bordification is homotopy equivalent to a spherical building; in the second case it is homotopy equivalent to curve complex of the surface. In the case of a reflection arrangement the boundary of its universal cover is the “curve complex” of the corresponding spherical Artin group. By definition this is the simplicial complex of all conjugates of proper, irreducible, spherical parabolic subgroups in the Artin group. A cohomological method is used to show that the curve complex of a spherical Artin group has the homotopy type of a wedge of spheres.