Fri, 04 Mar 2022

14:00 - 15:00
L3

Do we understand Fibonacci numbers in plants?

Dr Jonathan Swinton
(Swinton.net)
Abstract

Fibonacci numbers in plants, such as in sunflower spiral counts, have long fascinated mathematicians. For the last thirty years, most analyses have been variants of a Standard Model in which plant organs are treated as point nodes successively placed on a cylinder according to a given function of the previous node positions, not too close or too far away from the existing nodes. These models usually lead to lattice solutions. As a parameter of the model, like the diameter of the cylinder, is changed, the lattice can transition to another, more complex lattice, with a different spiral count. It can typically be proved that these transitions move lattice counts to higher Fibonacci numbers. While mathematically compelling, empirical validation of this Standard Model is as yet weak, even though the underlying molecular mechanisms are increasingly well characterised. 

In this talk I'll show a gallery of Fibonacci patterning and give a brief history of mathematical approaches, including a partially successful attempt by Alan Turing. I'll describe how the classification of lattices on cylinders connects both to a representation of $SL(2,Z)$ and to applications through defining the constraint that any model must satisfy to show Fibonacci structure. I'll discuss a range of such models, how they might be used to make testable predictions, and why this matters.

From 2011 to 2017 Jonathan Swinton  was a visiting professor to MPLS in Oxford in Computational Systems Biology. His new textbook Mathematical Phyllotaxis will be published  soon, and his Alan Turing's Manchester will be republished by The History Press in May 2022. 

 

Thu, 03 Mar 2022
16:00
Virtual

Existentially closed measure-preserving actions of universally free groups

Isaac Goldbring
(University of California Irvine)
Abstract

In this talk, we discuss existentially closed measure preserving actions of countable groups.  A classical result of Berenstein and Henson shows that the model companion for this class exists for the group of integers and their analysis readily extends to cover all amenable groups.  Outside of the class of amenable groups, relatively little was known until recently, when Berenstein, Henson, and Ibarlucía proved the existence of the model companion for the case of finitely generated free groups.  Their proof relies on techniques from stability theory and is particular to the case of free groups.  In this talk, we will discuss the existence of model companions for measure preserving actions for the much larger class of universally free groups (also known as fully residually free groups), that is, groups which model the universal theory of the free group.  We also give concrete axioms for the subclass of elementarily free groups, that is, those groups with the same first-order theory as the free group.  Our techniques are ergodic-theoretic and rely on the notion of a definable cocycle.  This talk represents ongoing work with Brandon Seward and Robin Tucker-Drob.

Thu, 03 Mar 2022

16:00 - 17:00
L4

Density of rational points on del Pezzo surfaces of degree 1

Rosa Winter
(King's College London)
Abstract

Let X be an algebraic variety over an infinite field k. In arithmetic geometry we are interested in the set X(k) of k-rational points on X. For example, is X(k) empty or not? And if it is not empty, is X(k) dense in X with respect to the Zariski topology?


Del Pezzo surfaces are surfaces classified by their degree d, which is an integer between 1 and 9 (for d >= 3, these are the smooth surfaces of degree d in P^d). For del Pezzo surfaces of degree at least 2 over a field k, we know that the set of k-rational points is Zariski dense provided that the surface has one k-rational point to start with (that lies outside a specific subset of the surface for degree 2). However, for del Pezzo surfaces of degree 1 over a field k, even though we know that they always contain at least one k-rational point, we do not know if the set of k-rational points is Zariski dense in general.


I will talk about density of rational points on del Pezzo surfaces, state what is known so far, and show a result that is joint work with Julie Desjardins, in which we give sufficient and necessary conditions for the set of k-rational points on a specific family of del Pezzo surfaces of degree 1 to be Zariski dense, where k is finitely generated over Q.

Thu, 03 Mar 2022
14:00
L6

String Cosmology

Joseph McGovern
((Oxford University))
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome

Thu, 03 Mar 2022

14:00 - 15:00
Virtual

Bayesian approximation error applied to parameter and state dimension reduction in the context of large-scale ice sheet inverse problems

Noémi Petra
(University of California Merced)
Abstract

Solving large-scale Bayesian inverse problems governed by complex models suffers from the twin difficulties of the high dimensionality of the uncertain parameters and computationally expensive forward models. In this talk, we focus on 1. reducing the computational cost when solving these problems (via joint parameter and state dimension reduction) and 2. accounting for the error due to using a reduced order forward model (via Bayesian Approximation Error (BAE)).  To reduce the parameter dimension, we exploit the underlying problem structure (e.g., local sensitivity of the data to parameters, the smoothing properties of the forward model, the fact that the data contain limited information about the (infinite-dimensional) parameter field, and the covariance structure of the prior) and identify a likelihood-informed parameter subspace that shows where the change from prior to posterior is most significant. For the state dimension reduction, we employ a proper orthogonal decomposition (POD) combined with the discrete empirical interpolation method (DEIM) to approximate the nonlinear term in the forward model. We illustrate our approach with a model ice sheet inverse problem governed by the nonlinear Stokes equation for which the basal sliding coefficient field (a parameter that appears in a Robin boundary condition at the base of the geometry) is inferred from the surface ice flow velocity. The results show the potential to make the exploration of the full posterior distribution of the parameter or subsequent predictions more tractable.

This is joint work with Ki-Tae Kim (UC Merced), Benjamin Peherstorfer (NYU) and Tiangang Cui (Monash University).

Thu, 03 Mar 2022
11:30
C6

Monadic Second Order interpretations

Mikołaj Bojańczyk
(University of Warsaw/University of Oxford)
Abstract

MSO can be used not only to accept/reject words, but also to transform words into other words, e.g. the doubling function w $\mapsto$ ww. The traditional model for this is called MSO transductions; the idea is that each position of the output word is interpreted in some position of the input word, and MSO is used to define the order on output positions and their labels. I will explain that an extension, where output positions are interpreted using $k$-tuples of input positions, is (a) is also well behaved; and (b) this is surprising.

Wed, 02 Mar 2022

16:00 - 17:00
C2

Amenable actions and groups

Paweł Piwek
(University of Oxford)
Abstract

Amenable actions are answering the question: "When can we prevent things like the Banach-Tarski Paradox happening?". It turns out that the most intuitive measure-theoretic sufficient condition is also necessary. We will briefly discuss the paradox, prove the equivalent conditions for amenability, give some ways of producing interesting examples of amenable groups and talk about amenable groups which can't be produced in these 'elementary' ways.

Teaser question: show that you can't decompose Z into finitely many pieces, which after rearrangement by translations make two copies of Z. (I.e. that you can't get the Banach-Tarski paradox on Z.)

Wed, 02 Mar 2022

14:00 - 15:00
Virtual

Twisted eleven-dimensional supergravity and exceptional lie algebras

Surya Raghavendran
(University of Toronto and Perimeter Institute)
Abstract

I'll describe an interacting holomorphic-topological field theory in eleven dimensions defined on products of Calabi-Yau 5-folds with real one-manifolds. The theory describes a certain deformation of the cotangent bundle to the moduli of Calabi-Yau deformations of the 5-fold and conjecturally describes a certain protected sector of eleven-dimensional supergravity. Strikingly, the theory has an infinite dimensional global symmetry algebra given by an extension of the exceptional lie superalgebra E(5,10) first studied by Kac. This talk is based on joint work with Ingmar Saberi and Brian Williams.

 

Wed, 02 Mar 2022

14:00 - 16:00
Virtual

Topics on Nonlinear Hyperbolic PDEs

Gui-Qiang G. Chen
(Oxford University)
Further Information

Dates/ Times (GMT): 2pm – 4pm Wednesdays 9th, 16th, 23rd Feb, and 2nd March

Course Length: 8 hrs total (4 x 2 hrs)

Abstract

Aimed: An introduction to the nonlinear theory of hyperbolic PDEs, as well as its close connections with the other areas of mathematics and wide range of applications in the sciences.

Wed, 02 Mar 2022

13:00 - 16:00
L4

March 2022 CDT in Maths of Random Systems Workshop

Jonathan Tam, Remy Messadene, Julien Berestycki
(University of Oxford and Imperial College London)
Further Information

Please contact @email for remote link

Abstract

1pm Jonathan Tam: Markov decision processes with observation costs

We present a framework for a controlled Markov chain where the state of the chain is only given at chosen observation times and of a cost. Optimal strategies therefore involve the choice of observation times as well as the subsequent control values. We show that the corresponding value function satisfies a dynamic programming principle, which leads to a system of quasi-variational inequalities (QVIs). Next, we give an extension where the model parameters are not known a priori but are inferred from the costly observations by Bayesian updates. We then prove a comparison principle for a larger class of QVIs, which implies uniqueness of solutions to our proposed problem. We utilise penalty methods to obtain arbitrarily accurate solutions. Finally, we perform numerical experiments on three applications which illustrate our framework.

Preprint at https://arxiv.org/abs/2201.07908

 

1.45pm Remy Messadene: signature asymptotics, empirical processes, and optimal transport

Rough path theory provides one with the notion of signature, a graded family of tensors which characterise, up to a negligible equivalence class, and ordered stream of vector-valued data. In the last few years, use of the signature has gained traction in time-series analysis, machine learning, deep learning and more recently in kernel methods. In this work, we lay down the theoretical foundations for a connection between signature asymptotics, the theory of empirical processes, and Wasserstein distances, opening up the landscape and toolkit of the second and third in the study of the first. Our main contribution is to show that the Hambly-Lyons limit can be reinterpreted as a statement about the asymptotic behaviour of Wasserstein distances between two independent empirical measures of samples from the same underlying distribution. In the setting studied here, these measures are derived from samples from a probability distribution which is determined by geometrical properties of the underlying path.

 

2.30-3.00 Tea & coffee in the mezzananie

 

3-4pm Julien Berestycki: Extremal point process of the branching Brownian motion

 

 

 

Wed, 02 Mar 2022

10:00 - 12:00
Virtual

Controllability of smooth and non smooth vector fields

Franco Rampazzo
(Università degli Studi di Padova)
Further Information

Dates and Times (GMT):

10am – 12pm Monday’s 2nd, 9th, 16th, 23rd March

8am – 10am Friday’s 4th, 11th, 18th, 25th March

Course Length: 16 hrs total (8 x 2 hrs)

Click here to enroll

Abstract

Courserequirements: Basicmathematicalanalysis.

Examination and grading: The exam will consist in the presentation of some previously as- signed article or book chapter (of course the student must show a good knowledge of those issues taught during the course which are connected with the presentation.).

SSD: MAT/05 Mathematical Analysis
Aim: to make students aware of smooth and non-smooth controllability results and of some

applications in various fields of Mathematics and of technology as well.

Course contents:

Vector fields are basic ingredients in many classical issues of Mathematical Analysis and its applications, including Dynamical Systems, Control Theory, and PDE’s. Loosely speaking, controllability is the study of the points that can be reached from a given initial point through concatenations of trajectories of vector fields belonging to a given family. Classical results will be stated and proved, using coordinates but also underlying possible chart-independent interpretation. We will also discuss the non smooth case, including some issues which involve Lie brackets of nonsmooth vector vector fields, a subject of relatively recent interest.

Bibliography: Lecture notes written by the teacher.

Tue, 01 Mar 2022

15:30 - 16:30
Virtual

CLTs for Pair Dependent Statistics of Circular Beta Ensembles

Ander Aguirre
(University of California Davis)
Abstract

In this talk, we give an overview of recent results on the fluctuation of the statistic $\sum_{i\neq j} f(L_N(\theta_i-\theta_j))$ for the Circular Beta Ensemble in the global, mesoscopic and local regimes. This work is morally related to Johansson's 1988 CLT for the linear statistic $\sum_i f(\theta_i)$ and Lambert's subsequent 2019 extension to the mesoscopic regime. The special case of the CUE ($\beta=2$) in the local regime $L_N=N$ is motivated by Montgomery's study of pair correlations of the rescaled zeros of the Riemann zeta function. Our techniques are of combinatorial nature for the CUE and analytical for $\beta\neq2$.

Tue, 01 Mar 2022

14:30 - 15:00
L5

A theory of meta-factorization

Michal Karpowicz
(Warsaw University of Technology)
Abstract

We introduce meta-factorization, a theory that describes matrix decompositions as solutions of linear matrix equations: the projector and the reconstruction equation. Meta-factorization reconstructs known factorizations, reveals their internal structures, and allows for introducing modifications, as illustrated with SVD, QR, and UTV factorizations. The prospect of meta-factorization also provides insights into computational aspects of generalized matrix inverses and randomized linear algebra algorithms. The relations between the Moore-Penrose pseudoinverse, generalized Nyström method, and the CUR decomposition are revealed here as an illustration. Finally, meta-factorization offers hints on the structure of new factorizations and provides the potential of creating them. 

Tue, 01 Mar 2022

14:00 - 15:00
Virtual

FFTA: Compressibility of random geometric graphs and structures

Mihai-Alin Badiu
(University of Oxford)
Abstract

Data that have an intrinsic network structure are becoming increasingly common in various scientific applications. Compressing such data for storage or transmission is an important problem, especially since networks are increasingly large. From an information theoretic perspective, the limit to compression of a random graph is given by the Shannon entropy of its distribution. A relevant question is how much of the information content of a random graph pertains to its structure (i.e., the unlabelled version of the graph), and how much of it is contained in the labels attached to the structure. Furthermore, in applications in which one is interested only in structural properties of a graph (e.g., node degrees, connectedness, frequency of occurrence of certain motifs), the node labels are irrelevant, such that only the structure of the graph needs to be compressed, leading to a more compact representation. In this talk, I will consider the random geometric graph (RGG), where pairs of nodes are connected based on the distance between them in some latent space. This model captures well important characteristics of biological systems, information networks, social networks, or economic networks. Since determination of the entropy is extremely difficult for this model, I will present upper bounds we obtained for the entropy of the labelled RGG. Then, we will focus on the structural information in the one-dimensional RGG. I will show our latest results in terms of the number of structures in the considered model and bounds on the structural entropy, together with the asymptotic behaviour of the bounds for different regimes of the connection range. Finally, I will also present a simple encoding scheme for one-dimensional RGG structures that asymptotically achieves the obtained upper limit on the structural entropy.

arXiv link: https://arxiv.org/abs/2107.13495

Tue, 01 Mar 2022
14:00
L5

Finite element methods for multicomponent convection-diffusion

Alexander Van-Brunt
(Mathematical Institute (University of Oxford))
Abstract

Mass transfer in multicomponent systems occurs through convection and diffusion. For a viscous Newtonian flow, convection may be modelled using the Navier–Stokes equations, whereas the diffusion of multiple species within a common phase may be described by the generalised Onsager–Stefan–Maxwell equations. In this talk we present a novel finite element formulation which fully couples convection and diffusion with these equations. In the regime of vanishing Reynolds number, we use the principles of linear irreversible dynamics to formulate a saddle point system which leads to a stable formulation and a convergent discretisation. The wide scope of applications for this novel numerical method is illustrated by considering transport of oxygen through the lungs, gas separation processes, mixing of water and methanol and salt transport in electrolytes.

Tue, 01 Mar 2022
14:00
L4

Independent sets in random subgraphs of the hypercube

Gal Kronenberg
(Oxford)
Abstract

Independent sets in bipartite regular graphs have been studied extensively in combinatorics, probability, computer science and more. The problem of counting independent sets is particularly interesting in the d-dimensional hypercube $\{0,1\}^d$, motivated by the lattice gas hardcore model from statistical physics. Independent sets also turn out to be very interesting in the context of random graphs.

The number of independent sets in the hypercube $\{0,1\}^d$ was estimated precisely by Korshunov and Sapozhenko in the 1980s and recently refined by Jenssen and Perkins.

In this talk we will discuss new results on the number of independent sets in a random subgraph of the hypercube. The results extend to the hardcore model and rely on an analysis of the antiferromagnetic Ising model on the hypercube.

This talk is based on joint work with Yinon Spinka.

Mon, 28 Feb 2022

16:00 - 17:00
C4

Joint moments of characteristic polynomials of random unitary matrices

Arun Soor
Abstract

The moments of Hardy’s function have been of interest to number theorists since the early 20th century, and to random matrix theorists especially since the seminal work of Keating and Snaith, who were able to conjecture the leading order behaviour of all moments. Studying joint moments offers a unified approach to both moments and derivative moments. In his 2006 thesis, Hughes made a version of the Keating-Snaith conjecture for joint moments of Hardy’s function. Since then, people have been calculating the joint moments on the random matrix side. I will outline some recent progress in these calculations. This is joint work with Theo Assiotis, Benjamin Bedert, and Mustafa Alper Gunes.

Mon, 28 Feb 2022

15:30 - 16:30
L3

A general criterion for the existence and uniqueness of maximal solutions for a class of Stochastic Partial Differential Equations

DAN CRISAN
((Imperial College, London))
Abstract

Modern atmospheric and ocean science require sophisticated geophysical fluid dynamics models. Among them, stochastic partial

differential equations (SPDEs) have become increasingly relevant. The stochasticity in such models can account for the effect

of the unresolved scales (stochastic parametrizations), model uncertainty, unspecified boundary condition, etc. Whilst there is an

extensive SPDE literature, most of it covers models with unrealistic noise terms, making them un-applicable to

geophysical fluid dynamics modelling. There are nevertheless notable exceptions: a number of individual SPDEs with specific forms

and noise structure have been introduced and analysed, each of which with bespoke methodology and painstakingly hard arguments.

In this talk I will present a criterion for the existence of a unique maximal strong solution for nonlinear SPDEs. The work

is inspired by the abstract criterion of Kato and Lai [1984] valid for nonlinear PDEs. The criterion is designed to fit viscous fluid

dynamics models with Stochastic Advection by Lie Transport (SALT) as introduced in Holm [2015]. As an immediate application, I show that 

the incompressible SALT 3D Navier-Stokes equation on a bounded domain has a unique maximal solution.

 

This is joint work with Oana Lang, Daniel Goodair and Romeo Mensah and it is partially supported by European Research Council (ERC)

Synergy project Stochastic Transport in the Upper Ocean Dynamics (https://www.imperial.ac.uk/ocean-dynamics-synergy/

Mon, 28 Feb 2022
15:30
L5

The centres of String 2-groups

Christoph Weis
Abstract

Let $G$ be a compact connected Lie group and $k \in H^4(BG,\mathbb{Z})$ a cohomology class. The String 2-group $G_k$ is the central extension of $G$ by the smooth 2-group $BU(1)$ classified by $k$. It has a close relationship to the level $k$ extension of the loop group $LG$.
We will introduce smooth 2-groups and the associated notion of centre. We then compute this centre for the String 2-groups, leveraging the power of maximal tori familiar from classical Lie theory.
The centre turns out to recover the invertible positive energy representations of $LG$ at level $k$ (as long as we exclude factors of $E_8$ at level 2).

 

Mon, 28 Feb 2022
14:15
L5

Chow quotients and geometric invariant theoretic quotients for group actions on complex projective varieties

Frances Kirwan
(University of Oxford)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

When a reductive group G acts on a complex projective variety
X, there exist different methods for finding an open G-invariant subset
of X with a geometric quotient (the 'stable locus'), which is a
quasi-projective variety and has a projective completion X//G. Mumford's
geometric invariant theory (GIT) developed in the 1960s provides one way
to do this, given a lift of the action to an ample line bundle on X,
though with no guarantee that the stable locus is not empty. An
alternative approach due to Kapranov and others in the 1990s is to use
Chow varieties to define a 'Chow quotient' X//G. The aim of this talk is
to review the relationship between these constructions for reductive
groups, and to discuss the situation when G is not reductive.

Mon, 28 Feb 2022
12:45
Virtual

Comments on scale-separated AdS vacua

Miguel Montero
(Harvard)
Abstract

There have been several proposals of scale-separated AdS vacua in the literature. All known examples arise from the effective field theory of flux compactifications with low supersymmetry, and there are often doubts about their consistency as 10 or 11d backgrounds in string theory. These issues can often be tackled in the bulk theory, or by analysis of the dual CFT via holography. I will review the most common issues, and focus the analysis on the recently constructed family of 3d scale-separated AdS vacua, which is dual to a two-dimensional CFT, emphasizing the discrete symmetry structure of the model in comparison to DGKT. Finally, I will comment on the tantalizing observation of integer operator dimensions in DGKT-like vacua, and comment on possible places to look for consistency issues in these models.

Fri, 25 Feb 2022

16:00 - 17:00
L1

North Meets South

Pascal Heid and Ilyas Khan
Abstract

This event will be hybrid and will take place in L1 and on Teams. A link will be available 30 minutes before the session begins.

Pascal Heid
Title: Adaptive iterative linearised Galerkin methods for nonlinear PDEs

Abstract: A wide variety of iterative methods for the solution of nonlinear equations exist. In many cases, such schemes can be interpreted as iterative local linearisation methods, which can be obtained by applying a suitable linear preconditioning operator to the original nonlinear equation. Based on this observation, we will derive an abstract linearisation framework which recovers some prominent iteration schemes. Subsequently, in order to cast this unified iteration procedure into a computational scheme, we will consider the discretisation by means of finite dimensional subspaces. We may then obtain an effective numerical algorithm by an instantaneous interplay of the iterative linearisation and an (optimally convergent) adaptive discretisation method. This will be demonstrated by a numerical experiment for a quasilinear elliptic PDE in divergence form.   

 

Ilyas Khan
Title: Geometric Analysis: Curvature and Applications

Abstract: Often, one will want to find a geometric structure on some given manifold satisfying certain properties. For example, one might want to find a minimal embedding of one manifold into another, or a metric on a manifold with constant scalar curvature, to name some well known examples of this sort of problem. In general, these problems can be seen as equivalent to solving a system of PDEs: differential relations on coordinate patches that can be assembled compatibly over the whole manifold to give a globally defined geometric equation.

In this talk, we will present the theories of minimal surfaces and mean curvature flow as representative examples of the techniques and philosophy that geometric analysis employs to solve problems in geometry of the aforementioned type. The description of the theory will be accompanied by a number of examples and applications to other fields, including physics, topology, and dynamics. 

Fri, 25 Feb 2022
16:00

Exact QFT duals of AdS black holes

Saebyeok Jeong
(Rutgers)
Further Information

It is also possible to join virtually via Teams.

Abstract

Recently, it has been more clearly understood that the N=4 superconformal index leads to the microstate counting of the BPS black holes in AdS_5 X S^5. The leading N^2 behavior of the free energy was shown in various ways to match that of the known BPS black hole in the gravity side, but this correspondence has not been realized at the level of the saddle point analysis of the full matrix model for the N=4 index. Here, I will try to clarify how such saddles corresponding to the BPS black holes arise as 'areal' distributions. The talk is based on https://arxiv.org/abs/2111.10720 with Sunjin Choi, Seok Kim, and Eunwoo Lee; https://arxiv.org/abs/2103.01401 with Sunjin Choi and Seok Kim.