Mon, 14 Jan 2013

15:45 - 16:45

Automorphisms of relatively hyperbolic groups and McCool groups

Vincent Guirardel
(Toulouse)
Abstract

We define a McCool group of G as the group of outer automorphisms of G acting as a conjugation on a given family of subgroups. We will explain that these groups appear naturally in the description of many natural groups of automorphisms. On the other hand, McCool groups of a toral relatively hyperbolic group have strong finiteness properties: they have a finite index subgroup with a finite classifying space. Moreover, they satisfy a chain condition that has several other applications.
This is a joint work with Gilbert Levitt.

Mon, 14 Jan 2013

12:00 - 13:00
L3

Non-commuting closed strings on non-geometric backgrounds

Magdalena Larfors
(Oxford)
Abstract
Strings are extended objects, and this means that they can be compactified not only on Riemannian manifolds, but also on more exotic spaces with generalized transition functions. An example of this is the T-fold, where T-duality is used to glue the Neveu-Schwarz fields of the background. Collectively, these exotic set-ups are known as non-geometric string compactifications, and in this talk I will discuss two of their aspects. First, I will present a field redefinition in the Neveu-Schwarz sector that allows a ten-dimensional, effective description of certain non-geometric backgrounds. This redefinition is inspired by Generalized Geometry and Double Field Theory. Second, I will show that closed strings become non-commuting when non-geometric fluxes are turned on. This will be done through the analysis of a three-torus with H-flux and its T-dual configurations.
Fri, 11 Jan 2013

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Kiran Singh - Multi-body dynamics in elastocapillary systems
  • Graham Morris - Investigating a catalytic mechanism using voltammetry
  • Thomas Woolley - Cellular blebs: pressure-driven axisymmetric, membrane protrusions
Thu, 10 Jan 2013

14:00 - 15:00
Gibson Grd floor SR

Packing Ellipsoids with Overlap

Professor Stephen Wright
(University of Wisconsin-Madison)
Abstract

Problems of packing shapes with maximal density, sometimes into a

container of restricted size, are classical in discrete

mathematics. We describe here the problem of packing a given set of

ellipsoids of different sizes into a finite container, in a way that

allows overlap but that minimizes the maximum overlap between adjacent

ellipsoids. We describe a bilevel optimization algorithm for finding

local solutions of this problem, both the general case and the simpler

special case in which the ellipsoids are spheres. Tools from conic

optimization, especially semidefinite programming, are key to the

algorithm. Finally, we describe the motivating application -

chromosome arrangement in cell nuclei - and compare the computational

results obtained with this approach to experimental observations.

\\

\\

This talk represents joint work with Caroline Uhler (IST Austria).

Tue, 08 Jan 2013

15:45 - 16:45
L3

Refined stable pair invariants on local Calabi-Yau threefolds

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

A refinement of the Pandharipande-Thomas stable pair invariants for local toric Calabi-Yau threefolds is defined by what we call the virtual Bialynicki-Birula decomposition. We propose a product formula for the generating function for the refined stable pair invariants extending the motivic product formula of Morrison, Mozgovoy, Nagao, and Szendroi for local ${\bf P}^1$. I will also describe how the proposed product formula is related to the wall crossing in my first talk. This is joint work with Sheldon Katz and Albrecht Klemm.

Tue, 08 Jan 2013

14:00 - 15:00
L3

On the moduli spaces of stable pairs on the projective plane

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

We study the birational relationship between the moduli spaces of $\alpha$-stable pairs and the moduli space $M(d,1)$ of stable sheaves on ${\bf P}^2$ with Hilbert polynomial $dm+1$. We explicitly relate them by birational morphisms when $d=4$ and $5$, and we describe the blow-up centers geometrically. As a byproduct, we obtain the Poincare polynomials of the moduli space of stable sheaves, or equivalently the refined BPS index. This is joint work with Kiryong Chung.

Wed, 19 Dec 2012

15:00 - 16:00

4-3-2-8-7-6

Dan Freed
Mon, 17 Dec 2012

16:30 - 17:30

Astor Lecture: The homotopy groups of spheres

Michael Hopkins
(Harvard University, USA)
Abstract

I will describe the history of the homotopy groups of spheres, and some of the many different roles they have come to play in mathematics.

Fri, 14 Dec 2012
16:00
L3

Some results and questions concerning lattices in totally disconnected groups

Tsachik Gelander
(Jersulem)
Abstract

I'll discuss some results about lattices in totally
disconnected locally compact groups, elaborating on the question:
which classical results for lattices in Lie groups can be extended to
general locally compact groups. For example, in contrast to Borel's
theorem that every simple Lie group admits (many) uniform and
non-uniform lattices, there are totally disconnected simple groups
with no lattices. Another example concerns with the theorem of Mostow
that lattices in connected solvable Lie groups are always uniform.
This theorem cannot be extended for general locally compact groups,
but variants of it hold if one implants sufficient assumptions. At
least 90% of what I intend to say is taken from a paper and an
unpublished preprint written jointly with P.E. Caprace, U. Bader and
S. Mozes. If time allows, I will also discuss some basic properties
and questions regarding Invariant Random Subgroups.

Fri, 14 Dec 2012
14:15
L3

Deformations and rigidity of lattices in soluble Lie groups

Benjamin Klopsch
(RHUL and Magdeburg)
Abstract

Let G be a simply connected, solvable Lie group and Γ a lattice in G. The deformation space D(Γ,G) is the orbit space associated to the action of Aut(G) on the space X(Γ,G) of all lattice embeddings of Γ into G. Our main result generalises the classical rigidity theorems of Mal'tsev and Saitô for lattices in nilpotent Lie groups and in solvable Lie groups of real type. We prove that the deformation space of every Zariski-dense lattice Γ in G is finite and Hausdorff, provided that the maximal nilpotent normal subgroup of G is connected.  I will introduce all necessary notions and try to motivate and explain this result.

Fri, 14 Dec 2012
13:00
L3

Cayley graphs of Fuchsian surface groups versus hyperbolic graphs

Caroline Series
(Warwick)
Abstract

Most results about the Cayley graph of a hyperbolic surface group can be replicated in the context of more general hyperbolic groups. In this talk I will discuss two results about such Cayley graphs which I do not know how to replicate in the more general context.

Fri, 14 Dec 2012

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Victor Burlakov - Understanding the growth of alumina nanofibre arrays
  • Brian Duffy - Measuring visual complexity of cluster-based visualisations
  • Chris Bell - Autologous chemotaxis due to interstitial flow
Thu, 13 Dec 2012

12:00 - 13:00
Gibson 1st Floor SR

Two nonlinear wave equations with conformal invariance

Po Lam Yung
(Rutgers University)
Abstract

In this talk, we will look at two non-linear wave equations in 2+1 dimensions, whose elliptic parts exhibit conformal invariance.

These equations have their origins in prescribing the Gaussian and mean curvatures respectively, and the goal is to understand well-posedness, blow-up and bubbling for these equations.

This is a joint work with Sagun Chanillo.

Thu, 06 Dec 2012

17:00 - 18:00
L3

An application of proof theory to lattice-ordered groups

George Metcalfe
(Bern)
Abstract

(Joint work with Nikolaos Galatos.) Proof-theoretic methods provide useful tools for tackling problems for many classes of algebras. In particular, Gentzen systems admitting cut-elimination may be used to establish decidability, complexity, amalgamation, admissibility, and generation results for classes of residuated lattices corresponding to substructural logics. However, for classes of algebras bearing a family resemblance to groups, such methods have so far met only with limited success. The main aim of this talk will be to explain how proof-theoretic methods can be used to obtain new syntactic proofs of two core theorems for the class of lattice-ordered groups: namely, Holland's result that this class is generated as a variety by the lattice-ordered group of order-preserving automorphisms of the real numbers, and the decidability of the word problem for free lattice-ordered groups.

Mon, 03 Dec 2012
00:00
SR2

Cutting sequences and Bouw-Möller surfaces

Diana Davis
(Brown University)
Abstract

We will start with the square torus, move on to all regular polygons, and then look at a large family of flat surfaces called Bouw-Möller surfaces, made by gluing together many polygons. On each surface, we will consider the action of a certain shearing action on geodesic paths on the surface, and a certain corresponding sequence.

Fri, 30 Nov 2012

16:00 - 17:00
Gibson Grd floor SR

Multillevel Weiner-Hopf Monte Carlo and Euler-Poisson schemes for L\'evy processes

Albert Ferreiro-Castilla
(University of Bath)
Abstract

In Kuznetsov et al. (2011) a new Monte Carlo simulation technique was introduced for a large family of L\'evy processes that is based on the Wiener-Hopf decomposition. We pursue this idea further by combining their technique with the recently introduced multilevel Monte Carlo methodology. We also provide here a theoretical analysis of the new Monte Carlo simulation technique in Kuznetsov et al. (2011) and of its multilevel variant. We find that the rate of convergence is uniformly with respect to the ``jump activity'' (e.g. characterised by the Blumenthal-Getoor index).

Fri, 30 Nov 2012

14:30 - 15:30
DH 3rd floor SR

Constructing plankton ecologies (and the library of Lotka)

Dr John Norbury
(Mathematical Insitute, Oxford)
Abstract

Mesocosm experiments provide a major test bed for models of plankton, greenhouse gas export to the atmosphere, and changes to ocean acidity, nitrogen and oxygen levels. A simple model of a mesocosm plankton ecology is given in terms of a set of explicit natural population dynamics rules that exactly conserve a key nutrient. These rules include many traditional population dynamics models ranging from Lotka-Volterra systems to those with more competitors and more trophic levels coupled by nonlinear processes. The rules allow a definition of an ecospace and an analysis of its behaviour in terms of equilibrium points on the ecospace boundary.

Ecological issues such as extinctions, plankton bloom succession, and system resilience can then be analytically studied. These issues are understood from an alternative view point to the usual search for interior equilibrium points and their classification, coupled with intensive computer simulations. Our approach explains why quadratic mortality usually stabilises large scale simulation, but needs to be considered carefully when developing the next generation of Earth System computer models. The ‘Paradox of the Plankton’ and ‘Invasion Theory’ both have alternative, yet straightforward explanations within these rules.