Valued difference fields and NTP2
Abstract
(Joint work with Artem Chernikov.) In the talk, we will first recall some basic results on valued difference fields, both from an algebraic and from a model-theoretic point of view. In particular, we will give a description, due to Hrushovski, of the theory VFA of the non-standard Frobenius acting on an algebraically closed valued field of residue characteristic 0, as well as an Ax-Kochen-Ershov type result for certain valued difference fields which was proved by Durhan. We will then present a recent work where it is shown that VFA does not have the tree property of the second kind (i.e., is NTP2); more generally, in the context of the Ax-Kochen-Ershov principle mentioned above, the valued difference field is NTP2 iff both the residue difference field and the value difference group are NTP2. The property NTP2 had already been introduced by Shelah in 1980, but only recently it has been shown to provide a fruitful ‘tameness’ assumption, e.g. when dealing with independence notions in unstable NIP theories (work of Chernikov-Kaplan).
Composition law of periodic orbits in discrete dynamical systems
Abstract
The periodic orbits of a discrete dynamical system can be described as
permutations. We derive the composition law for such permutations. When
the composition law is given in matrix form the composition of
different periodic orbits becomes remarkably simple. Composition of
orbits in bifurcation diagrams and decomposition law of composed orbits
follow directly from that matrix representation.
Hamiltonian evolution of half-flat SU(3) structures
Abstract
This talk surveys the well known relationship between half-flat SU(3) structures on 6-manifolds M and metrics with holonomy in G_2 on Mx(a,b), focusing on the case in which M=S3xS3 with solutions invariant by SO(4).
Borcherds-Kac-Moody algebras and Langlands interpolation
Abstract
We introduce a deformation process of universal enveloping algebras of Borcherds-Kac-Moody algebras, which generalises quantum groups' one and yields a large class of new algebras called coloured Borcherds-Kac-Moody algebras. The direction of deformation is specified by the choice of a collection of numbers. For example, the natural numbers lead to classical enveloping algebras, while the quantum numbers lead to quantum groups. We prove, in the finite type case, that every coloured BKM algebra have representations which deform representations of semisimple Lie algebras and whose characters are given by the Weyl formula. We prove, in the finite type case, that representations of two isogenic coloured BKM algebras can be interpolated by representations of a third coloured BKM algebra. In particular, we solve conjectures of Frenkel-Hernandez about the Langland duality between representations of quantum groups. We also establish a Langlands duality between representations of classical BKM algebras, extending results of Littelmann and McGerty, and we interpret this duality in terms of quantum interpolation.
A locally adaptive Cartesian finite-volume framework for solving PDEs on surfaces
Abstract
We describe our current efforts to develop finite volume
schemes for solving PDEs on logically Cartesian locally adapted
surfaces meshes. Our methods require an underlying smooth or
piecewise smooth grid transformation from a Cartesian computational
space to 3d surface meshes, but does not rely on analytic metric terms
to obtain second order accuracy. Our hyperbolic solvers are based on
Clawpack (R. J. LeVeque) and the parabolic solvers are based on a
diamond-cell approach (Y. Coudi\`ere, T. Gallou\"et, R. Herbin et
al). If time permits, I will also discuss Discrete Duality Finite
Volume methods for solving elliptic PDEs on surfaces.
\\
\\
To do local adaption and time subcycling in regions requiring high
spatial resolution, we are developing ForestClaw, a hybrid adaptive
mesh refinement (AMR) code in which non-overlapping fixed-size
Cartesian grids are stored as leaves in a forest of quad- or
oct-trees. The tree-based code p4est (C. Burstedde) manages the
multi-block connectivity and is highly scalable in realistic
applications.
\\
\\
I will present results from reaction-diffusion systems on surface
meshes, and test problems from the atmospheric sciences community.
How local is a local martingale diffusion?
Abstract
Our starting point is a recent characterisation of one-dimensional, time-homogeneous diffusion in terms of its distribution at an exponential time. The structure of this characterisation leads naturally to the idea of measuring `how far' a diffusion is away from being a martingale diffusion in terms of expected local time at the starting point. This work in progress has a connection to finance and to
a Skorokhod embedding.
Aspects of variational problems with linear growth condition on metric measure spaces
Engulfed subgroups of discrete groups
Abstract
A subgroup $H$ of a group $G$ is said to be engulfed if there is a
finite-index subgroup $K$ other than $G$ itself such that $H<K$, or
equivalently if $H$ is not dense in the profinite topology on $G$. In
this talk I will present a variety of methods for showing that a
subgroup of a discrete group is engulfed, and demonstrate how these
methods can be used to study finite-sheeted covering spaces of
topological spaces.
Relaxation of a Generalized Willmore Functional
Abstract
Several shape optimization problems, e.g. in image processing, biology, or discrete geometry, involve the Willmore functional, which is for a surface the integrated squared mean curvature. Due to its singularity, minimizing this functional under constraints is a delicate issue. More precisely, it is difficult to characterize precisely the structure of the minimizers and to provide an explicit
formulation of their energy. In a joint work with Giacomo Nardi (Paris-Dauphine), we have studied an "integrated" version of the Willmore functional, i.e. a version defined for functions and not only for sets. In this talk, I will describe the tools, based on Young measures and varifolds, that we have introduced to address the relaxation issue. I will also discuss some connections with the phase-field numerical approximation of the Willmore flow, that we have investigated with Elie Bretin (Lyon) and Edouard Oudet (Grenoble).
17:00
'Orbit coherence in permutation groups'
Abstract
Let G be a permutation group acting on a set Omega. For g in G, let pi(g) denote the partition of Omega given by the orbits of g. The set of all partitions of Omega is naturally ordered by refinement and admits lattice operations of meet and join. My talk concerns the groups G such that the partitions pi(g) for g in G form a sublattice. This condition is highly restrictive, but there are still many interesting examples. These include centralisers in the symmetric group Sym(Omega) and a class of profinite abelian groups which act on each of their orbits as a subgroup of the Prüfer group. I will also describe a classification of the primitive permutation groups of finite degree whose set of orbit partitions is closed under taking joins, but not necessarily meets.
This talk is on joint work with John R. Britnell (Imperial College).
Formality of ordinary and twisted de Rham complex from derived algebraic geometry
Abstract
Beautiful results of Deligne-Illusie, Sabbah, and Ogus-Vologodsky show that certain modifications of the de Rham complex (either the usual one, or twisted versions of it that appear in the study of the cyclic homology of categories of matrix factorizations) are formal in positive characteristic. These are the crucial steps in proving algebraic analogues of the Hodge theorem (again, either in the ordinary setting or in the presence of a twisting). I will present these results along with a new approach to understanding them using derived intersection theory. This is joint work with Dima Arinkin and Marton Hablicsek.
14:30
The hitting time of rainbow connectivity two
Abstract
Rainbow connectivity is a new concept for measuring the connectivity of a graph which was introduced in 2008 by Chartrand, Johns, McKeon and Zhang. In a graph G with a given edge colouring, a rainbow path is a path all of whose edges have distinct colours. The minimum number of colours required to colour the edges of G so that every pair of vertices is joined by at least one rainbow path is called the rainbow connection number rc(G) of the graph G.
For any graph G, rc(G) >= diam(G). We will discuss rainbow connectivity in the random graph setting and present the result that for random graphs, rainbow connectivity 2 happens essentially at the same time as diameter 2. In fact, in the random graph process, with high probability the hitting times of diameter 2 and of rainbow connection number 2 coincide
The Mechanics of Multitubes
Abstract
Multi-layered cylinders, or 'multitubes', are ubiquitous throughout the biological world, from microscopic axons to plant stems. Whilst these structures share an underlying common geometry, each one fulfils a different key role in its relevant environment. For example plant stems provide a transport network for nutrients within the organism, whilst the tongue of a chameleon is used for prey capture. This talk will be concerned with the mechanical stability of multitubes. How do the material properties, applied tractions and geometry of elastic rods and tubes influence their critical buckling pressure and mode of buckling? We will discuss the phenomenon of differential growth, an important factor in the mechanical behaviour of such systems and introduce a mathematical framework, which can be used to model differential growth in soft tissues and predict the onset of buckling. We will also present a small number of applications for this research.
12:00
Once Upon a Time in Egypt: How the Story of Rational Points Began
Abstract
A nice bed-time story to end the term. It is often said that ideas like the group law or isogenies on elliptic curves were 'known to Fermat' or are 'found
in Diophantus', but this is rarely properly explained. I will discuss the first work on rational points on curves from the point of view of modern number
theory, asking if it really did anticipate the methods we use today.
A polynomial upper bound on Reidemeister moves
Abstract
Consider a diagram of the unknot with c crossings. There is a
sequence of Reidemeister
moves taking this to the trivial diagram. But how many moves are required?
In my talk, I will give
an overview of my recent proof that there is there is an upper bound on the
number of moves, which
is a polynomial function of c.
14:15
Geometry and topology of superfluid liquids
Abstract
The lecture will discuss some applications of topology to a number of interesting physical systems:
1. Classifications of Phases, 2. Classifications of one-dimensional textures in Nematics and Superfluid HE-3,
3. Classification of defects, 4. Phase transition in Liquid membranes.
The solution of these problems leads to interesting mathematics but the talk will also include some historical remarks.
Fractional Laplacian with gradient perturbations
Abstract
We consider the fractional Laplacian perturbed by the gradient operator b(x)\nabla for various classes of vector fields b. We construct end estimate the corresponding semigroup.
Scanning for stabilizing bundles in heterotic vacua
Abstract
Exact Implied Volatility Expansions
Abstract
We derive an exact implied volatility expansion for any model whose European call price can be expanded analytically around a Black-Scholes call price. Two examples of our framework are provided (i) exponential Levy models and (ii) CEV-like models with local stochastic volatility and local stochastic jump-intensity.