Fri, 23 Nov 2012

12:00 - 13:00
Gibson 1st Floor SR

$\chi$-Systems for Correlation Functions

Jonathan Toledo
(Perimeter Institute)
Abstract
We consider the strong coupling limit of 4-point functions of heavy operators in N=4 SYM dual to strings with no spin in AdS. We restrict our discussion for operators inserted on a line. The string computation factorizes into a state-dependent sphere part and a universal AdS contribution which depends only on the dimensions of the operators and the cross ratios. We use the integrability of the AdS string equations to compute the AdS part for operators of arbitrary conformal dimensions. The solution takes the form of TBA-like integral equations with the minimal AdS string-action computed by a corresponding free-energy-like functional. These TBA-like equations stem from a peculiar system of functional equations which we call a \chi-system. In principle one could use the same method to solve for the AdS contribution in the N-point function. An interesting feature of the solution is that it encodes multiple string configurations corresponding to different classical saddle-points. The discrete data that parameterizes these solutions enters through the analog of the chemical-potentials in the TBA-like equations. Finally, for operators dual to strings spinning in the same equator in S^5 (i.e. BPS operators of the same type) the sphere part is simple to compute. In this case (which is generically neither extremal nor protected) we can construct the complete, strong-coupling 4-point function.
Fri, 23 Nov 2012

10:00 - 11:30
DH 1st floor SR

Virtual Anglo-Saxons. Agent-based modelling in archaeology and palaeodemography

Andreas Duering
(Archaeology, Oxford)
Abstract

The University of Oxford’s modelling4all software is a wonderful tool to simulate early medieval populations and their cemeteries in order to evaluate the influence of palaeodemographic variables, such as mortality, fertility, catastrophic events and disease on settlement dispersal. In my DPhil project I will study archaeological sites in Anglo-Saxon England and the German south-west in a comparative approach. The two regions have interesting similarities in their early medieval settlement pattern and include some of the first sites where both cemeteries and settlements were completely excavated.

An important discovery in bioarchaeology is that an excavated cemetery is not a straightforward representation of the living population. Preservation issues and the limitations of age and sex estimation methods using skeletal material must be considered. But also the statistical procedures to calculate the palaeodemographic characteristics of archaeological populations are procrustean. Agent-based models can help archaeologists to virtually bridge the chasm between the excavated dead populations and their living counterparts in which we are really interested in.

This approach leads very far away from the archaeologist’s methods and ways of thinking and the major challenge therefore is to balance innovative ideas with practicability and tangibility.

Some of the problems for the workshop are:

1.) Finding the best fitting virtual living populations for the excavated cemeteries

2.) Sensitivity analyses of palaeodemographic variables

3.) General methodologies to evaluate the outcome of agent based models

4.) Present data in a way that is both statistically correct and up to date & clear for archaeologists like me

5.) Explore how to include analytical procedures in the model to present the archaeological community with a user-friendly and not necessarily overwhelming toolkit

 

Thu, 22 Nov 2012

17:00 - 18:00
L3

A non-desarguesian projective plane of analytic origin

Boris Zilber
(Oxford)
Abstract
(This is a joint result with Katrin Tent.) We construct a series of new omega-stable non-desarguesian projective planes, including ones of Morley rank 2, 
avoiding a direct use of Hrushovski's construction. Instead we make use of the field of complex numbers with a holomorphic function  (Liouville function) which is an omega-stable structure by results of A.Wilkie and P.Koiran.  We first find a pseudo-plane interpretable in the above analytic structure and then "collapse" the pseudo-plane to a projective plane applying a modification of Hrushovski's mu-function. 
Thu, 22 Nov 2012

16:00 - 17:00
DH 1st floor SR

An Energy model for the mechanically driven unfolding of titin macromolecules

Giuseppe Saccomandi
(Universita' degli Studi Perugia)
Abstract

We propose a model to reproduce qualitatively and quantitatively the experimental behavior obtained by the AFM techniques for the titin. Via an energetic based minimization approach we are able to deduce a simple analytical formulations for the description of the mechanical behavior of multidomain proteins, giving a physically base description of the unfolding mechanism. We also point out that our model can be inscribed in the led of the pseudo-elastic variational damage model with internal variable and fracture energy criteria of the continuum mechanics. The proposed model permits simple analytical calculations and

to reproduce hard-device experimental AFM procedures. The proposed model also permits the continuum limit approximation which maybe useful to the development of a three-dimensional multiscale constitutive model for biological tissues.

Thu, 22 Nov 2012

15:00 - 16:00
SR1

Teichmüller Curves in TQFT

Shehryar Sikander
(Aarhus University)
Abstract

In this talk we show how Teichmüller curves can be used to compute

quantum invariants of certain Pseudo-Anasov mapping tori. This involves

computing monodromy of the Hitchin connection along closed geodesics of

the Teichmüller curve using iterated integrals. We will mainly focus on

the well known Teichmüller curve generated by a pair of regular

pentagons. This is joint work with J. E. Andersen.

Thu, 22 Nov 2012

14:00 - 15:00
L3

Cherednik algebras for curves and deformed preprojective algebras

Dr Oleg Chalykh
Abstract

To any complex smooth variety Y with an action of a finite group G, Etingof associates a global Cherednik algebra. The usual rational Cherednik algebra corresponds to the case of Y= C^n and a finite Coxeter group G

Thu, 22 Nov 2012

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Domain decomposition for total variation regularisation and applications

Dr Carola-Bibiane Schönlieb
(DAMTP, University of Cambridge)
Abstract

Domain decomposition methods were introduced as techniques for solving partial differential equations based on a decomposition of the spatial domain of the problem into several subdomains. The initial equation restricted to the subdomains defines a sequence of new local problems. The main goal is to solve the initial equation via the solution of the local problems. This procedure induces a dimension reduction which is the major responsible of the success of such a method. Indeed, one of the principal motivations is the formulation of solvers which can be easily parallelized.

In this presentation we shall develop a domain decomposition algorithm to the minimization of functionals with total variation constraints. In this case the interesting solutions may be discontinuous, e.g., along curves in 2D. These discontinuities may cross the interfaces of the domain decomposition patches. Hence, the crucial difficulty is the correct treatment of interfaces, with the preservation of crossing discontinuities and the correct matching where the solution is continuous instead. I will present our domain decomposition strategy, including convergence results for the algorithm and numerical examples for its application in image inpainting and magnetic resonance imaging.

Thu, 22 Nov 2012

13:00 - 15:00
DH 1st floor SR

Self referential options

Jeff Dewynn
Abstract

A number of pricing models for electricity and carbon credit pricing involve nonlinear dependencies between two, or more, of the processes involved; for example, the models developed by Schwarz and Howison. The consequences of these nonlinearities are not well understood.

In this talk I will discuss some much simpler models, namely options whose values are defined self-referentially, which have been looked at in order to better understand the effects of these non-linear dependencies.

Wed, 21 Nov 2012
16:00
SR2

Magnus QI: the motion picture, featuring the Magnus embedding

Andrew Sale
(University of Oxford)
Abstract

Let F be a free group, and N a normal subgroup of F with derived subgroup N'. The Magnus embedding gives a way of seeing F/N' as a subgroup of a wreath product of a free abelian group over over F/N. The aim is to show that the Magnus embedding is a quasi-isometric embedding (hence "Q.I." in the title). For this I will use an alternative geometric definition of the embedding (hence "picture"), which I will show is equivalent to the definition which uses Fox calculus. Please note that we will assume no prior knowledge of calculus.

Tue, 20 Nov 2012
17:00
L2

"Nielsen equivalence and groups whose profinite genus is infinite"

Martin Bridson
(Oxford)
Abstract

In our 2004 paper, Fritz Grunewald and I constructed the first
pairs of finitely presented, residually finite groups $u: P\to G$
such that $P$ is not isomorphic to $G$ but the map that $u$ induces on
profinite completions is an isomorphism. We were unable to determine if
there might exist finitely presented, residually finite groups $G$ that
with infinitely many non-isomorphic finitely presented subgroups $u_n:
P_n\to G$ such that $u_n$ induces a profinite isomorphism. I shall
discuss how two recent advances in geometric group theory can be used in
combination with classical work on Nielsen equivalence to settle this
question.

Tue, 20 Nov 2012

15:45 - 16:45
SR1

SEMINAR CANCELLED

Ed Segal
(Imperial)
Abstract

SEMINAR CANCELLED

Tue, 20 Nov 2012
14:30
SR1

"Interpolation, box splines, and lattice points in zonotopes"

Matthias Lenz
(Merton College)
Abstract

Given a finite list of vectors X in $\R^d$, one can define the box spline $B_X$. Box splines are piecewise polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of view and many of their properties solely depend on the structure of the matroid defined by the list X. The support of the box spline is a certain polytope called zonotope Z(X). We will show that if the list X is totally unimodular, any real-valued function defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form $p(D)B_X$ in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was conjectured by Olga Holtz and Amos Ron. The talk will focus on combinatorial aspects and all objects mentioned above will be defined. (arXiv:1211.1187)

Tue, 20 Nov 2012

14:15 - 15:15
Eagle House

Fluctuation analysis for the loss from default

Kay Giesecke
(Standford University)
Abstract

We analyze the fluctuation of the loss from default around its large portfolio limit in a class of reduced-form models of correlated default timing. We prove a weak convergence result for the fluctuation process and use it for developing a conditionally Gaussian approximation to the loss distribution. Numerical results illustrate the accuracy of the approximation.

This is joint work with Kostas Spiliopoulos (Boston University) and Justin Sirignano (Stanford).

Mon, 19 Nov 2012

15:45 - 16:45
L3

Finding Short Conjugators in Wreath Products and Free Solvable Groups

Andrew Sale
(Oxford)
Abstract

The question of estimating the length of short conjugators in between
elements in a group could be described as an effective version of the
conjugacy problem. Given a finitely generated group $G$ with word metric
$d$, one can ask whether there is a function $f$ such that two elements
$u,v$ in $G$ are conjugate if and only if there exists a conjugator $g$ such
that $d(1,g) \leq f(d(1,u)+d(1,v))$. We investigate this problem in free
solvable groups, showing that f may be cubic. To do this we use the Magnus
embedding, which allows us to see a free solvable group as a subgroup of a
particular wreath product. This makes it helpful to understand conjugacy
length in wreath products as well as metric properties of the Magnus
embedding.

Mon, 19 Nov 2012

15:45 - 16:45
Oxford-Man Institute

Strong and weak solutions to stochastic Landau-Lifshitz equations

Zdzislaw Brzezniak
(University of York)
Abstract

I will speak about the of weak (and the existence and uniqueness of strong solutions) to the stochastic
Landau-Lifshitz equations for multi (one)-dimensional spatial domains. I will also describe the corresponding Large Deviations principle and it's applications to a ferromagnetic wire. The talk is based on a joint works with B. Goldys and T. Jegaraj.

Mon, 19 Nov 2012
14:15
L3

Tropical geometry and scheme theory

Jeff Giansiracusa
(Swansea)
Abstract

Motived by the desire to study geometry over the 'field with one element', in the past decade several authors have constructed extensions of scheme theory to geometries locally modelled on algebraic objects more general than rings. Semi-ring schemes exist in all of these theories, and it has been suggested that schemes over the semi-ring T of tropical numbers should describe the polyhedral objects of tropical geometry. We show that this is indeed the case by lifting Payne's tropicalization functor for subvarieties of toric varieties to the category of T-schemes. There are many applications such as tropical Hilbert schemes, tropical sheaf theory, and group actions and quotients in tropical geometry. This project is joint work with N. Giansiracusa (Berkeley).

Mon, 19 Nov 2012

14:15 - 15:15
Oxford-Man Institute

Google maps and improper Poisson line processes

WILFRID KENDALL
(University of Warwick)
Abstract

I will report on joint work in progress with David Aldous, concerning a curious random metric space on the plane which can be constructed with the help of an improper Poisson line process.