Thu, 22 Oct 2020

16:15 - 17:00
Virtual

The C*-algebras associated to a Wieler solenoid

Robin Deeley
(University of Colorado Boulder)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Wieler has shown that every irreducible Smale space with totally disconnected stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Through examples I will discuss how this allows one to compute the K-theory of the stable algebra, S, and the stable Ruelle algebra, S\rtimes Z. These computations involve writing S as a stationary inductive limit and S\rtimes Z as a Cuntz-Pimsner algebra. These constructions reemphasize the view point that Smale space C*-algebras are higher dimensional generalizations of Cuntz-Krieger algebras. The main results are joint work with Magnus Goffeng and Allan Yashinski.

Thu, 22 Oct 2020

16:00 - 17:00

Optimal Execution with Stochastic Delay

Leandro Sanchez Betancourt
((Oxford University))
Abstract

We show how traders use immediate execution limit orders (IELOs) to liquidate a position when the time between a trade attempt and the outcome of the attempt is random, i.e., there is latency in the marketplace and latency is random. We frame our model as a delayed impulse control problem in which the trader controls the times and the price limit of the IELOs she sends to the exchange. The contribution of the paper is twofold: (i) Our paper is the first to study an optimal liquidation problem that accounts for random delays, price impact, and transaction costs. (ii) We introduce a new type of impulse control problem with stochastic delay, not previously studied in the literature. We characterise the value functions as the solution to a coupled system of a Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) and a partial differential equation. We use a Feynman-Kac type representation to reduce the system of coupled value functions to a non-standard HJBQVI, and we prove existence and uniqueness of this HJBQVI in a viscosity sense. Finally, we implement the latency-optimal strategy and compare it with three benchmarks:  (i)  optimal execution with deterministic latency, (ii) optimal execution with zero latency, (iii) time-weighted average price strategy. We show that when trading in the EUR/USD currency pair, the latency-optimal strategy outperforms the benchmarks between ten USD per million EUR traded and ninety USD per million EUR traded.

Thu, 22 Oct 2020

16:00 - 17:00
Virtual

Thin Film Flows on a Substrate of Finite Width: A Novel Similarity Solution

Howard Stone
(Princeton)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

There are many examples of thin-film flows in fluid dynamics, and in many cases similarity solutions are possible. In the typical, well-known case the thin-film shape is described by a nonlinear partial differential equation in two independent variables (say x and t), which upon recognition of a similarity variable, reduces the problem to a nonlinear ODE. In this talk I describe work we have done on 1) Marangoni-driven spreading on pre-wetted films, where the thickness of the pre-wetted film affects the dynamics, and 2) the drainage of a film on a vertical substrate of finite width. In the latter case we find experimentally a structure to the film shape near the edge, which is a function of time and two space variables. Analysis of the corresponding thin-film equation shows that there is a similarity solution, collapsing three independent variables to one similarity variable, so that the PDE becomes an ODE. The solution is in excellent agreement with the experimental measurements.

Thu, 22 Oct 2020

15:30 - 16:15
Virtual

Von Neumann algebras and equivalences between groups

Lauren Ruth
(Mercy College)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

We have various ways of describing the extent to which two countably infinite groups are "the same." Are they isomorphic? If not, are they commensurable? Measure equivalent? Quasi-isometric? Orbit equivalent? W*-equivalent? Von Neumann equivalent? In this expository talk, we will define these notions of equivalence, discuss the known relationships between them, and work out some examples. Along the way, we will describe recent joint work with Ishan Ishan and Jesse Peterson.

Thu, 22 Oct 2020

14:00 - 15:00
Virtual

Elliptic fibrations

Sebastjan Cizel
((Oxford University))
Thu, 22 Oct 2020

14:00 - 15:00
Virtual

Classifier-based Distribution-Dissimilarities: From Maximum Mean Discrepancies to Adversarial Examples

Carl-Johann Simon-Gabriel
(ETH Zurich)
Further Information

datasig.ox.ac.uk/events

Abstract

Any binary classifier (or score-function) can be used to define a dissimilarity between two distributions of points with positive and negative labels. Actually, many well-known distribution-dissimilarities are classifier-based dissimilarities: the total variation, the KL- or JS-divergence, the Hellinger distance, etc. And many recent popular generative modelling algorithms compute or approximate these distribution-dissimilarities by explicitly training a classifier: eg GANs and their variants. After a brief introduction to these classifier-based dissimilarities, I will focus on the influence of the classifier's capacity. I will start with some theoretical considerations illustrated on maximum mean discrepancies --a weak form of total variation that has grown popular in machine learning-- and then focus on deep feed-forward networks and their vulnerability to adversarial examples. We will see that this vulnerability is already rooted in the design and capacity of our current networks, and will discuss ideas to tackle this vulnerability in future.

Thu, 22 Oct 2020
14:00
Virtual

A new block preconditioner for implicit Runge-Kutta methods for parabolic PDE

Victoria Howle
(Texas Tech University)
Abstract

In this talk, we introduce a new preconditioner for the large, structured systems appearing in implicit Runge–Kutta time integration of parabolic partial differential equations. This preconditioner is based on a block LDU factorization with algebraic multigrid subsolves for scalability.

We compare our preconditioner in condition number and eigenvalue distribution, and through numerical experiments, with others in the literature. In experiments run with implicit Runge–Kutta stages up to s = 7, we find that the new preconditioner outperforms the others, with the improvement becoming more pronounced as the spatial discretization is refined and as temporal order is increased.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to trefethen@maths.ox.ac.uk.

Thu, 22 Oct 2020
12:00
Virtual

A nonlinear open mapping principle, with applications to the Jacobian determinant / A general nonlinear mapping theorem and applications to the incompressible Euler equations

André Guerra / Lukas Koch
(University of Oxford)
Abstract

I will present a nonlinear version of the open mapping principle which applies to constant-coefficient PDEs which are both homogeneous and weak* stable. An example of such a PDE is the Jacobian equation. I will discuss the consequences of such a result for the Jacobian and its relevance towards an answer to a long-standing problem due to Coifman, Lions, Meyer and Semmes. This is based on joint work with Lukas Koch and Sauli Lindberg.

/

I present a general nonlinear open mapping principle suited to applications to scale-invariant PDEs in regularity regimes where the equations are stable under weak* convergence. As an application I show that, for any p<, the set of initial data for which there are dissipative weak solutions in LptL2x is meagre in the space of solenoidal L^2 fields. This is based on joint work with A. Guerra (Oxford) and S. Lindberg (Aalto).

 

Thu, 22 Oct 2020
11:30
Virtual

On the Zilber-Pink Conjecture for complex abelian varieties and distinguished categories

Gabriel Dill
(Oxford)
Abstract

The Zilber-Pink conjecture predicts how large the intersection of a d-dimensional subvariety of an abelian variety/algebraic torus/Shimura variety/... with the union of special subvarieties of codimension > d can be (where the definition of "special" depends on the setting). In joint work with Fabrizio Barroero, we have reduced this conjecture for complex abelian varieties to the same conjecture for abelian varieties defined over the algebraic numbers. In work in progress, we introduce the notion of a distinguished category, which contains both connected commutative algebraic groups and connected mixed Shimura varieties. In any distinguished category, special subvarieties can be defined and a Zilber-Pink statement can be formulated. We show that any distinguished category satisfies the defect condition, introduced as a useful technical tool by Habegger and Pila. Under an additional assumption, which makes the category "very distinguished", we show furthermore that the Zilber-Pink statement in general follows from the case where the subvariety is defined over the algebraic closure of the field of definition of the distinguished variety. The proof closely follows our proof in the case of abelian varieties and leads also to unconditional results in the moduli space of principally polarized abelian surfaces as well as in fibered powers of the Legendre family of elliptic curves.

Wed, 21 Oct 2020

16:00 - 17:30

Ultrafilters on omega versus forcing

Andreas Blass
(University of Michigan)
Abstract

I plan to survey known facts and open questions about ultrafilters on omega generating (or not generating) ultrafilters in forcing extensions.

Wed, 21 Oct 2020
10:00
Virtual

Algorithms for the Recognition of Primitive Elements in a Free Group

Dario Ascari
(University of Oxford)
Abstract

Primitive elements are elements that are part of a basis for a free group. We present the classical Whitehead algorithm for the recognition of such elements, and discuss the ideas behind the proof. We also present a second algorithm, more recent and completely different in the approach.

Tue, 20 Oct 2020

15:30 - 16:30

Comparing counting functions for determinantal point processes

Mark Meckes
(Case Western Reserve University)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

 

I will describe a general method for comparing the counting functions of determinantal point processes in terms of trace class norm distances between their kernels (and review what all of those words mean). Then I will outline joint work with Elizabeth Meckes using this method to prove a version of a self-similarity property of eigenvalues of Haar-distributed unitary matrices conjectured by Coram and Diaconis.  Finally, I will discuss ongoing work by my PhD student Kyle Taljan, bounding the rate of convergence for counting functions of GUE eigenvalues to the Sine or Airy process counting functions.

 

 

 

Tue, 20 Oct 2020
14:30
Virtual

A double Landau-de Gennes mathematical model of smectic A liquid crystals

Jingmin Xia
(Mathematical Institute (University of Oxford))
Abstract

Smectic A liquid crystals are of great interest in physics for their striking defect structures, including curvature walls and focal conics. However, the mathematical modeling of smectic liquid crystals has not been extensively studied. This work takes a step forward in understanding these fascinating topological defects from both mathematical and numerical viewpoints. In this talk, we propose a new (two- and three-dimensional) mathematical continuum model for the transition between the smectic A and nematic phases, based on a real-valued smectic order parameter for the density perturbation and a tensor-valued nematic order parameter for the orientation. Our work expands on an idea mentioned by Ball & Bedford (2015). By doing so, physical head-to-tail symmetry in half charge defects is respected, which is not possible with vector-valued nematic order parameter.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to trefethen@maths.ox.ac.uk.

Tue, 20 Oct 2020

14:15 - 15:15
Virtual

Subspace arrangements and the representation theory of rational Cherednik algebras

Stephen Griffeth
(Universidad de Talca)
Abstract

I will explain how the representation theory of rational Cherednik algebras interacts with the commutative algebra of certain subspace arrangements arising from the reflection arrangement of a complex reflection group. Potentially, the representation theory allows one to study both qualitative questions (e.g., is the arrangement Cohen-Macaulay or not?) and quantitative questions (e.g., what is the Hilbert series of the ideal of the arrangement, or even, what are its graded Betti numbers?), by applying the tools (such as orthogonal polynomials, Kazhdan-Lusztig characters, and Dirac cohomology) that representation theory provides. This talk is partly based on joint work with Susanna Fishel and Elizabeth Manosalva.

Tue, 20 Oct 2020

14:00 - 15:00
Virtual

FFTA: Hierarchical community structure in networks

Leto Peel
(Maastricht University)
Abstract

Modular and hierarchical structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular, or "community", structures have included identifying fundamental limits of detectability by formally defining community structure using probabilistic generative models. Detecting hierarchical community structure introduces additional challenges alongside those inherited from community detection. Here we present a theoretical study on hierarchical community structure in networks, which has thus far not received the same rigorous attention. We address the following questions: 1) How should we define a valid hierarchy of communities? 2) How should we determine if a hierarchical structure exists in a network? and 3) how can we detect hierarchical structure efficiently? We approach these questions by introducing a definition of hierarchy based on the concept of stochastic externally equitable partitions and their relation to probabilistic models, such as the popular stochastic block model. We enumerate the challenges involved in detecting hierarchies and, by studying the spectral properties of hierarchical structure, present an efficient and principled method for detecting them.

https://arxiv.org/abs/2009.07196 (15 sept.)

Tue, 20 Oct 2020
14:00
Virtual

Stochastic rounding for parabolic PDEs in half precision

Matteo Croci
(Mathematical Institute (University of Oxford))
Abstract

Motivated by the advent of machine learning, the last few years saw the return of hardware-supported low-precision computing. Computations with fewer digits are faster and more memory and energy efficient, but can be extremely susceptible to rounding errors. An application that can largely benefit from the advantages of low-precision computing is the numerical solution of partial differential equations (PDEs), but a careful implementation and rounding error analysis are required to ensure that sensible results can still be obtained. In this talk we study the accumulation of rounding errors in the solution of the heat equation, a proxy for parabolic PDEs, via Runge-Kutta finite difference methods using round-to-nearest (RtN) and stochastic rounding (SR). We demonstrate how to implement the numerical scheme to reduce rounding errors and we present \emph{a priori} estimates for local and global rounding errors. Let u be the roundoff unit. While the worst-case local errors are O(u) with respect to the discretization parameters, the RtN and SR error behaviour is substantially different. We show that the RtN solution is discretization, initial condition and precision dependent, and always stagnates for small enough Δt. Until stagnation, the global error grows like O(uΔt1). In contrast, the leading order errors introduced by SR are zero-mean, independent in space and mean-independent in time, making SR resilient to stagnation and rounding error accumulation. In fact, we prove that for SR the global rounding errors are only O(uΔt1/4) in 1D and are essentially bounded (up to logarithmic factors) in higher dimensions.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to trefethen@maths.ox.ac.uk.

Tue, 20 Oct 2020

12:45 - 13:30

A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares

Zhen Shao
((Oxford University))
Abstract

We propose a subspace Gauss-Newton method for nonlinear least squares problems that builds a sketch of the Jacobian on each iteration. We provide global rates of convergence for regularization and trust-region variants, both in expectation and as a tail bound, for diverse choices of the sketching matrix that are suitable for dense and sparse problems. We also have encouraging computational results on machine learning problems.

Tue, 20 Oct 2020
12:00
Virtual

Construction of Cauchy data for the dynamical formation of apparent horizons and the Penrose Inequality

Martin Lesourd
(BHI Harvard)
Abstract

We construct a class of Cauchy initial data without (marginally) trapped surfaces whose future evolution is a trapped region bounded by an apparent horizon, i.e., a smooth hypersurface foliated by MOTS. The estimates obtained in the evolution lead to the following conditional statement: if Kerr Stability holds, then this kind of initial data yields a class of scale critical vacuum examples of Weak Cosmic Censorship and the Final State Conjecture. Moreover, owing to estimates for the ADM mass of the data and the area of the MOTS, the construction gives a fully dynamical vacuum setting in which to study the Spacetime Penrose Inequality. We show that the inequality is satisfied for an open region in the Cauchy development of this kind of initial data, which itself is controllable by the initial data. This is joint work with Nikos Athanasiou https://arxiv.org/abs/2009.03704.

Tue, 20 Oct 2020
10:30
Virtual

The threshold bias of the clique-factor game

Anita Liebenau
(UNSW)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Let r>3 be an integer and consider the following game on the complete graph Kn for n a multiple of r: Two players, Maker and Breaker, alternately claim previously unclaimed edges of Kn such that in each turn Maker claims one and Breaker claims b edges. Maker wins if her graph contains a Kr-factor, that is a collection of n/r vertex-disjoint copies of Kr, and Breaker wins otherwise. In other words, we consider the b-biased Kr-factor Maker-Breaker game. We show that the threshold bias for this game is of order n2/(r+2). This makes a step towards determining the threshold bias for making bounded-degree spanning graphs and extends a result of Allen, Böttcher, Kohayakawa, Naves and Person who resolved the case r=3 or 4 up to a logarithmic factor.
    Joint work with Rajko Nenadov.

Tue, 20 Oct 2020
09:00
Virtual

Scaling limits of the two- and three-dimensional uniform spanning trees

David Croydon
(Kyoto)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will introduce recent work on the two- and three-dimensional uniform spanning trees (USTs) that establish the laws of these random objects converge under rescaling in a space whose elements are measured, rooted real trees, continuously embedded into Euclidean space. (In the three-dimensional case, the scaling result is currently only known along a particular scaling sequence.) I will also discuss various properties of the intrinsic metrics and measures of the limiting spaces, including their Hausdorff dimension, as well as the scaling limits of the random walks on the two- and three-dimensional USTs. In the talk, I will attempt to emphasise where the differences lie between the two cases, and in particular the additional challenges that arise when it comes to the three-dimensional model.
    The two-dimensional results are joint with Martin Barlow (UBC) and Takashi Kumagai (Kyoto). The three-dimensional results are joint with Omer Angel (UBC) and Sarai Hernandez-Torres (UBC).

Mon, 19 Oct 2020

16:00 - 17:00

Khovanskii's Theorem and Effective Results on Sumset Structure

Michael Curran
Abstract

A remarkable theorem due to Khovanskii asserts that for any finite subset A of an abelian group, the cardinality of the h-fold sumset hA grows like a polynomial for all sufficiently large h. However, neither the polynomial nor what sufficiently large means are understood in general. We obtain an effective version of Khovanskii's theorem for any AZ whose convex hull is a simplex; previously such results were only available for d=1. Our approach also gives information about the structure of hA, answering a recent question posed by Granville and Shakan. The work is joint with Leo Goldmakher at Williams College.

Mon, 19 Oct 2020
16:00
Virtual

The Universe from a single particle (apologies to William Blake)

Michael Freedman
(Microsoft Research)
Abstract

In Joint work with Modj Shokrian-Zini we study (numerically) our proposal that interacting physics can arise from single particle quantum Mechanics through spontaneous symmetry breaking SSB. The staring point is the claim the difference between single and many particle physics amounts to the probability distribution on the space of Hamiltonians. Hamiltonians for interacting systems seem to know about some local, say qubit, structure, on the Hilbert space, whereas typical QM systems need not have such internal structure. I will discuss how the former might arise from the latter in a toy model. This story is intended as a “prequel” to the decades old reductionist story in which low energy standard model physics is supposed to arise from something quite different at high energy. We ask the question: Can interacting physics itself can arise from something simpler.

Mon, 19 Oct 2020

16:00 - 17:00

Deep neural networks, generic universal interpolation and controlled ODEs

CHRISTA CUCHIERO
(University of Vienna)
Abstract

Abstract: A recent paradigm views deep neural networks as discretizations of certain controlled ordinary differential equations, sometimes called neural ordinary differential equations. We make use of this perspective to link expressiveness of deep networks to the notion of controllability of dynamical systems. Using this connection, we study an expressiveness property that we call universal interpolation, and show that it is generic in a certain sense. The universal interpolation property is slightly weaker than universal approximation, and disentangles supervised learning on finite training sets from generalization properties. We also show that universal interpolation holds for certain deep neural networks even if large numbers of parameters are left untrained, and are instead chosen randomly. This lends theoretical support to the observation that training with random initialization can be successful even when most parameters are largely unchanged through the training. Our results also explore what a minimal amount of trainable parameters in neural ordinary differential equations could be without giving up on expressiveness.

Joint work with Martin Larsson, Josef Teichmann.

Mon, 19 Oct 2020

14:15 - 15:15
Virtual

Spin(7) Instantons and HYM Connections for the Stenzel Metric

Hector Papoulias
(Oxford)
Abstract

The Spin(7) and SU(4) structures on a Calabi-Yau 4-fold give rise to certain first order PDEs defining special Yang-Mills connections: the Spin(7) instanton equations and the Hermitian Yang-Mills (HYM) equations respectively. The latter are stronger than the former. In 1998 C. Lewis proved that -over a compact base space- the existence of an HYM connection implies the converse. In this talk we demonstrate that the equivalence of the two gauge-theoretic problems fails to hold in generality. We do this by studying the invariant solutions on a highly symmetric noncompact Calabi-Yau 4-fold: the Stenzel manifold. We give a complete description of the moduli space of irreducible invariant Spin(7) instantons with structure group SO(3) on this space and find that the HYM connections are properly embedded in it. This moduli space reveals an explicit example of a sequence of Spin(7) instantons bubbling off near a Cayley submanifold. The missing limit is an HYM connection, revealing a potential relationship between the two equation systems.

Mon, 19 Oct 2020
12:45
Virtual

Joint Moments of Characteristic Polynomials of Random Unitary Matrices

Jon Keating
(University of Oxford)
Abstract

 I will review what is known and not known about the joint moments of the characteristic polynomials of random unitary matrices and their derivatives. I will then explain some recent results which relate the joint moments to an interesting class of measures, known as Hua-Pickrell measures. This leads to the proof of a conjecture, due to Chris Hughes in 2000, concerning the asymptotics of the joint moments, as well as establishing a connection between the measures in question and one of the Painlevé equations.