Wed, 03 Dec 2014

16:00 - 17:00
C1

Dehn's problems and Houghton's groups

Charles Cox
(Southampton)
Abstract

Deciding whether or not two elements of a group are conjugate might seem like a trivial problem. However, there exist finitely presented groups where this problem is undecidable: there is no algorithm to output yes or no for any two elements chosen. In this talk Houghton groups (a family of groups all having solvable conjugacy problem) will be introduced as will the idea of twisted conjugacy: a generalisation of the conjugacy problem where an automorphism is also given. This will be our main tool in answering whether finite extensions and finite index subgroups of any Houghton group have solvable conjugacy problem.

Wed, 03 Dec 2014
12:30
N3.12

The Banach-Tarski paradox

Federico Vigolo
(Oxford University)
Abstract

The Banach-Tarski paradox is a celebrated result showing that, using the axiom of choice, it is possible to deconstruct a ball into finitely many pieces that may be rearranged to build two copies of that ball. In this seminar we will sketch the proof of the paradox trying to emphasize the key ideas.
 

Tue, 02 Dec 2014

17:00 - 18:00
C2

Branch groups: groups that look like trees

Alejandra Garrido
(Oxford)
Abstract

Groups which act on rooted trees, and branch groups in particular, have provided examples of groups with exotic properties for the last three decades. This and their links to other areas of mathematics such as dynamical systems has made them the object of intense research.
One of their more useful properties is that of having a "tree-like" subgroup structure, in several senses. 
I shall explain what this means in the talk and give some applications.

Tue, 02 Dec 2014
15:45
L4

The homological projective dual of Sym^2(P^n)

Jorgen Rennemo
(Imperial College London)
Abstract

In recent years, some powerful tools for computing semi-orthogonal decompositions of derived categories of algebraic varieties have been developed: Kuznetsov's theory of homological projective duality and the closely related technique of VGIT for LG models. In this talk I will explain how the latter works and how it can be used to understand the derived categories of complete intersections in Sym^2(P^n). As a consequence, we obtain a new proof of result of Hosono and Takagi, which says that a certain pair of non-birational Calabi-Yau 3-folds are derived equivalent.

Tue, 02 Dec 2014

14:30 - 15:00
L5

The maximal Sobolev regularity of distributions supported by arbitrary subsets of R^n

David Hewett
(University of Oxford)
Abstract

Given a subset E of R^n with empty interior, what is the maximum regularity exponent s for which there exist non-zero distributions in the Bessel potential Sobolev space H^s_p(R^n) that are supported entirely inside E? This question has arisen many times in my recent investigations into boundary integral equation formulations of linear wave scattering by fractal screens, and it is closely related to other fundamental questions concerning Sobolev spaces defined on ``rough'' (i.e. non-Lipschitz) domains. Roughly speaking, one expects that the ``fatter'' the set, the higher the maximum regularity that can be supported. For sets of zero Lebesgue measure one can show, using results on certain set capacities from classical potential theory, that the maximum regularity (if it exists) is negative, and is (almost) characterised by the fractal (Hausdorff) dimension of E. For sets with positive measure the maximum regularity (if it exists) is non-negative,but appears more difficult to characterise in terms of geometrical properties of E.  I will present some partial results in this direction, which have recently been obtained by studying the asymptotic behaviour of the Fourier transform of the characteristic functions of certain fat Cantor sets.

Tue, 02 Dec 2014

14:30 - 15:30
L3

Phase transitions in bootstrap percolation

Michal Przykucki
(University of Oxford)
Abstract
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Joint work with Paul Balister, Béla Bollobás and Paul Smith.
Tue, 02 Dec 2014

12:00 - 13:00
L5

A geometric interpretation of algebraic quantum mechanics

Boris Zilber
Abstract

We treat the problem of geometric interpretation of the formalism
of algebraic quantum mechanics as a special case of the general problem of
extending classical 'algebra - geometry' dualities (such as the
Gel'fand-Naimark theorem) to non-commutative setting.  
I will report on some progress in establishing such dualities. In
particular, it leads to a theory of approximate representations of Weyl
algebras
in finite dimensional  "Hilbert spaces". Some calculations based on this
theory will be discussed.

Mon, 01 Dec 2014

17:00 - 18:00
L6

Functions of bounded variation on metric measure spaces

Panu Lahti
(Aalto University)
Abstract

Functions of bounded variation, abbreviated as BV functions, are defined in the Euclidean setting as very weakly differentiable functions that form a more general class than Sobolev functions. They have applications e.g. as solutions to minimization problems due to the good lower semicontinuity and compactness properties of the class. During the past decade, a theory of BV functions has been developed in general metric measure spaces, which are only assumed to be sets endowed with a metric and a measure. Usually a so-called doubling property of the measure and a Poincaré inequality are also assumed. The motivation for studying analysis in such a general setting is to gain an understanding of the essential features and assumptions used in various specific settings, such as Riemannian manifolds, Carnot-Carathéodory spaces, graphs, etc. In order to generalize BV functions to metric spaces, an equivalent definition of the class not involving partial derivatives is needed, and several other characterizations have been proved, while others remain key open problems of the theory.

 

Panu is visting Oxford until March 2015 and can be found in S2.48

Mon, 01 Dec 2014

15:45 - 16:45
C6

Extended 3-dimensional topological field theories

Chris Schommer-Pries
(MPI Bonn)
Abstract

I will survey recent advances in our understanding of extended
3-dimensional topological field theories. I will describe recent work (joint
with B. Bartlett, C. Douglas, and J. Vicary) which gives an explicit
"generators and relations" classification of partially extended 3D TFTS
(assigning values only to 3-manifolds, surfaces, and 1-manifolds). This will
be compared to the fully-local case (which has been considered in joint work
with C. Douglas and N. Snyder).

 

Mon, 01 Dec 2014
14:15
L5

An Abundance of K3 Fibrations and the Structure of the Landscape

Philip Candelas
(Oxford)
Abstract

Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic K3 fibrations whose mirror images are also elliptic K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.

Mon, 01 Dec 2014
14:15
Oxford-Man Institute

Conformal restriction: 3-point chordal case.

Wei Qian
(ETH Zurich)
Abstract

Lawler, Schramm and Werner studied 2-point chordal restriction measures and gave several constructions using SLE tools.

It is possible to characterize 3-point chordal restriction measures in a similar manner. Their boundaries are SLE(8/3)-like curves with a slightly different drift term.

@email

Mon, 01 Dec 2014

12:00 - 13:00
L5

High-loop perturbative QFT from integrability

Dmytro Volin
(Trinity College Dublin)
Abstract

The planar N=4 SYM is believed to be integrable. Following this thoroughly justified belief, its exact spectrum had been encoded recently into a quantum spectral curve (QSC). We can explicitly solve the QSC in various regimes; in particular, one can perform a highly-efficient weak coupling expansion.

I will explain how QSC looks like for the harmonic oscillator and then, using this analogy, introduce the QSC equations for the SYM spectrum. We will use these equations to compute a particular 6-loop conformal dimension in real time and then discuss explicit results (found up to 10-loop orders) as well as some general statements about the answer at any loop-order.

Fri, 28 Nov 2014
14:00
L2

An optimal control approach for modelling Neutrophil cell migration

Dr Anotida Madzvamuse
(University of Sussex)
Abstract

Cell migration is of vital importance in many biological studies, hence robust cell tracking algorithms are needed for inference of dynamic features from (static) in vivo and in vitro experimental imaging data of cells migrating. In recent years much attention has been focused on the modelling of cell motility from physical principles and the development of state-of-the art numerical methods for the simulation of the model equations. Despite this, the vast majority of cell tracking algorithms proposed to date focus solely on the imaging data itself and do not attempt to incorporate any physical knowledge on cell migration into the tracking procedure. In this study, we present a mathematical approach for cell tracking, in which we formulate the cell tracking problem as an inverse problem for fitting a mathematical model for cell motility to experimental imaging data. The novelty of this approach is that the physics underlying the model for cell migration is encoded in the tracking algorithm. To illustrate this we focus on an example of Zebrafish (Danio rerio's larvae} Neutrophil migration and contrast an ad-hoc approach to cell tracking based on interpolation with the model fitting approach we propose in this talk.

Fri, 28 Nov 2014

13:00 - 14:00
L6

Rank Dependent Utility and Risk Taking

Xunyu Zhou
(Oxford University)
Abstract

We analyze the portfolio choice problem of investors who maximize rank dependent utility in a single-period complete market. We propose a new
notion of less risk taking: choosing optimal terminal wealth that pays off more in bad states and less in good states of the economy. We prove that investors with a less risk averse preference relation in general choose more risky terminal wealth, receiving a risk premium in return for accepting conditional-zero-mean noise (more risk). Such general comparative static results do not hold for portfolio weights, which we demonstrate with a counter-example in a continuous-time model. This in turn suggests that our notion of less risk taking is more meaningful than the traditional notion based on holding less stocks.

This is a joint work with Xuedong He and Roy Kouwenberg.

Thu, 27 Nov 2014

16:00 - 17:00
L5

Twitter video indir

Przemyslaw Chojecki
(Oxford)
Further Information

Twitter video indirme sitesi: https://indireyim.com/

Abstract

The classical conjecture of Serre (proved by Khare-Winterberger) states that a continuous, absolutely irreducible, odd representation of the absolute Galois group of Q on two-dimensional F_p-vector space is modular. We show how one can formulate its analogue in characteristic 0. In particular we discuss the weight part of the conjecture. This is a joint work with John Bergdall.

Thu, 27 Nov 2014

16:00 - 17:00
C2

Lagrangian Floer theory

Lino Campos
(Oxford University)
Abstract

Lagrangian Floer cohomology categorifies the intersection number of (half-dimensional) Lagrangian submanifolds of a symplectic manifold. In this talk I will describe how and when can we define Lagrangian Floer cohomology. In the case when Floer cohomology cannot be defined I will describe an alternative invariant known as the Fukaya (A-infinity) algebra.

Thu, 27 Nov 2014

16:00 - 17:30
L4

SDEs with weighted local times and discontinuous coefficients, transmission boundary conditions for semilinear PDEs, and related BSDEs

Professor Denis Talay
(INRIA)
Abstract

(Denis Talay, Inria — joint works with N. Champagnat, N. Perrin, S. Niklitschek Soto)

In this lecture we present recent results on SDEs with weighted local times and discontinuous coefficients. Their solutions allow one to construct probabilistic interpretations of  semilinear PDEs with discontinuous coefficients and transmission boundary conditions in terms of BSDEs which do not satisfy classical conditions.

Thu, 27 Nov 2014

16:00 - 17:00
L3

Gas-cushioned droplet impacts on porous surfaces and on heated surfaces with phase change

Peter Hicks
(Aberdeen)
Abstract

Droplet impacts form an important part of many processes and a detailed
understanding of the impact dynamics is critical in determining any
subsequent splashing behaviour. Prior to touchdown a gas squeeze film is
set-up between the substrate and the approaching droplet. The pressure
build-up in this squeeze film deforms the droplet free-surface, trapping
a pocket of gas and delaying touchdown. In this talk I will discuss two
extensions of existing models of pre-impact gas-cushioned droplet
behaviour, to model droplet impacts with textured substrates and droplet
impacts with surfaces hot enough to induce pre-impact phase change.

In the first case the substrate will be modelled as a thin porous layer.
This produces additional pathways for some of the gas to escape and
results in less delayed touchdown compared to a flat plate. In the
second case ideas related to the evaporation of heated thin viscous
films will be used to model the phase change. The vapour produced from
the droplet is added to the gas film enhancing the existing cushioning
mechanism by generating larger trapped gas pockets, which may ultimately
prevent touchdown altogether once the temperature enters the Leidenfrost
regime.

Thu, 27 Nov 2014

14:00 - 16:00
L4

Geometric Satake Equivalence

Pavel Safronov
(University of Oxford)
Abstract

Both sides of the geometric Langlands correspondence have natural Hecke
symmetries. I will explain an identification between the Hecke
symmetries on both sides via the geometric Satake equivalence. On the
abelian level it relates the topology of a variety associated to a group
and the representation category of its Langlands dual group.
 

Thu, 27 Nov 2014

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Incomplete Cholesky preconditioners based on orthogonal dropping : theory and practice

Artem Napov
(Universite Libre de Bruxelles)
Abstract

Incomplete Cholesky factorizations are commonly used as black-box preconditioners for the iterative solution of large sparse symmetric positive definite linear systems. Traditionally, incomplete 
factorizations are obtained by dropping (i.e., replacing by zero) some entries of the factors during the factorization process. Here we consider a less common way to approximate the factors : through low-rank approximations of some off-diagonal blocks. We focus more specifically on approximation schemes that satisfy the orthogonality condition: the approximation should be orthogonal to the corresponding approximation error.

The resulting incomplete Cholesky factorizations have attractive theoretical properties. First, the underlying factorization process can be shown breakdown-free. Further, the condition number of the 
preconditioned system, that characterizes the convergence rate of standard iterative schemes, can be shown bounded as a function of the accuracy of individual approximations. Hence, such a bound can benefit from better approximations, but also from some algorithmic peculiarities. Eventually, the above results can be shown to hold for any symmetric positive definite system matrix.

On the practical side, we consider a particular variant of the preconditioner. It relies on a nested dissection ordering of unknowns to  insure an attractive memory usage and operations count. Further, it exploits in an algebraic way the low-rank structure present in system matrices that arise from PDE discretizations. A preliminary implementation of the method is compared with similar Cholesky and 
incomplete Cholesky factorizations based on dropping of individual entries.

Thu, 27 Nov 2014

12:00 - 13:00
L4

Interface motion in ill-posed diffusion equations

Michael Helmers
(Bonn University)
Abstract
We consider a discrete nonlinear diffusion equation with bistable nonlinearity. The formal continuum limit of this problem is an
ill-posed PDE, thus any limit dynamics might feature measure-valued solutions, phases interfaces, and hysteretic interface motion.
Based on numerical simulations, we first discuss the phenomena that occur for different types of initial. Then we focus on the case of
interfaces with non-trivial dynamics and study the rigorous passage to the limit for a piecewise affine nonlinearity.
Thu, 27 Nov 2014
11:00
C5

Axiomatizing Q by "G_Q + ε"

Jochen Koenigsmann
(Oxford)
Abstract

we discuss various conjectures about the absolute Galois group G_Q  of the field Q of rational numbers and to what extent it encodes the elementary theory of Q.

Wed, 26 Nov 2014
16:00
C2

Set functions.

Leobardo Fernández Román
(UNAM Mexico)
Abstract
A continuum is a non-empty
compact connected metric space.
Given a continuum X let P(X) be the
power set of X. We define the following
set functions:
 
T:P(X) to P(X) given by, for each A in P(X),
T(A) = X \ { x in X : there is a continuum W
such that x is in Int(W) and W does not
intersect A}.
 
K:P(X) to P(X) given by, for each A in P(X)
K(A) = Intersection{ W : W is a subcontinuum
of X and A is in the interior of W}.
 
Also, it is possible to define the arcwise
connected version of these functions.
Given an arcwise connected continuum X:
 
Ta:P(X) to P(X) given by, for each A in P(X),
Ta(A) = X \ { x in X : there is an arcwise
connected continuum W such that x is in
Int(W) and W does not intersect A}.
 
Ka:P(X) to P(X) given by, for each A in P(X),
Ka(A) = Intersection{ W : W is an arcwise
connected subcontinuum of X and A is in
the interior of W}
 
Some properties, examples and relations
between these functions are going to be
presented.
Wed, 26 Nov 2014

16:00 - 17:00
C1

There is only one gap in the isoperimetric spectrum

Robert Kropholler
(Oxford)
Abstract

We saw earlier that a subquadratic isoperimetric inequality implies a linear one. I will give examples of groups, due to Brady and Bridson, which prove that this is the only gap in the isoperimetric spectrum. 

Wed, 26 Nov 2014
12:30
N3.12

The Artin approximation theorem in algebraic geometry

Emily Cliff
(Oxford University)
Abstract

Given a commutative ring A with ideal m, we consider the formal completion of A at m, and we ask when algebraic structures over the completion can be approximated by algebraic structures over the ring A itself. As we will see, Artin's approximation theorem tells us for which types of algebraic structures and which pairs (A,m) we can expect an affirmative answer. We will introduce some local notions from algebraic geometry, including formal and etale neighbourhoods. Then we will discuss some algebraic structures and rings arising in algebraic geometry and satisfying the conditions of the theorem, and show as a corollary how we can lift isomorphisms from formal neighbourhoods to etale neighbourhoods of varieties.

Tue, 25 Nov 2014

17:00 - 18:00
C2

On universal right angled Artin groups

Ashot Minasyan
(Southampton)
Abstract
A right angled Artin group (RAAG), also called a graph group or a partially commutative group, is a group which has a finite presentation where 
the only permitted defining relators are commutators of the generators. These groups and their subgroups play an important role in Geometric Group Theory, especially in view of the recent groundbreaking results of Haglund, Wise, Agol, and others, showing that many groups possess finite index subgroups that embed into RAAGs.
In their recent work on limit groups over right angled Artin groups, Casals-Ruiz and Kazachkov asked whether for every natural number n there exists a single "universal" RAAG, A_n, containing all n-generated subgroups of RAAGs. Motivated by this question, I will discuss several results showing that "universal" (in various contexts) RAAGs generally do not exist. I will also mention some positive results about universal groups for finitely presented n-generated subgroups of direct products of free and limit groups.
Tue, 25 Nov 2014
15:45
L4

Complex Geometry and the Hele-Shaw flow

Julius Ross
(Cambridge)
Abstract

The goal of this talk is to discuss a link between the Homogeneous Monge Ampere Equation in complex geometry, and a certain flow in the plane motivated by some fluid mechanics.   After discussing and motivating the Dirichlet problem for this equation I will focus to what is probably the first non-trivial case that one can consider, and prove that it is possible to understand regularity of the solution in terms of what is known as the Hele-Shaw flow in the plane. As such we get, essentially explicit, examples of boundary data for which there is no regular solution, contrary to previous expectation.  All of this is joint work with David Witt Nystrom.

Tue, 25 Nov 2014

14:00 - 14:30
L5

Efficient optimization algorithms for nonlinear least-squares and inverse problems

Coralia Cartis
(University of Oxford)
Abstract
I will present an on-going project with Simon Tett, Mike Mineter and Kuniko Yamazaki (School of GeoSciences, Edinburgh University) that investigates automatically tuning relevant parameters of a standard climate model to match observations. The resulting inverse/least-squares problems are nonconvex, expensive to evaluate and noisy which makes them highly suitable for derivative-free optimisation algorithms. We successfully employ such methods and attempt to interpret the results in a meaningful way for climate science.
Tue, 25 Nov 2014

12:00 - 13:00
L5

Symmetries, K-theory, and the Bott periodicity of topological phases

Guo Chuan Thiang
Abstract

Topological phases of matter exhibit Bott-like periodicity with respect to
time-reversal, charge conjugation, and spatial dimension. I will explain how
the non-commutative topology in topological phases originates very generally
from symmetry data, and how operator K-theory provides a powerful and
natural framework for studying them.

Mon, 24 Nov 2014

15:45 - 16:45
Oxford-Man Institute

Recombination, Scenario reduction, and nested high order integration with positive weights.

Terry Lyons and Maria Tchernychova
(Oxford University)
Abstract

Cubature is the business of describing a probability measure in terms of an empirical measure sharing its support with the original measure, of small support, and with identical integrals for a class of functions (eg polynomials with degree less than k). 

Applying cubature to already discrete sets of scenarios provides a powerful tool for scenario management and summarising data.  We refer to this process as recombination. It is a feasible operation in real time and has lead to high accuracy pde solvers.

The practical complexity of this operation has changed! By a factor corresponding to the dimension of the space of polynomials. 

We discuss the algorithm and give home computed examples of nested sparse grids with only positive weights in moderate dimensions (eg degree 1-8 in dimension 7).  Positive weights have significant advantage over signed ones when available.
 

Mon, 24 Nov 2014

15:45 - 16:45
C6

CAT(0) cube complexes, distance formulas and quasi-flats

Alessandro Sisto
(ETH Zuerich)
Abstract

Starting with seminal work by Masur-Minsky, a lot of machinery has been
developed to study the geometry of Mapping Class Groups, and this has
lead, for example, to the proof of quasi-isometric rigidity results.
Parts of this machinery include hyperbolicity of the curve complex, the
distance formula and hierarchy paths.
As it turns out, all this can be transposed to the context of CAT(0)
cube complexes. I will explain some of the key parts of the machinery
and then I will discuss results about quasi-Lipschitz maps from
Euclidean spaces and nilpotent Lie groups into "spaces with a distance
formula".
Joint with Jason Behrstock and Mark Hagen.

Mon, 24 Nov 2014

15:30 - 16:30
L2

Bifurcations in mathematical models of self-organization

Pierre Degond
(Imperial College London)
Abstract

We consider self-organizing systems, i.e. systems consisting of a large number of interacting entities which spontaneously coordinate and achieve a collective dynamics. Sush systems are ubiquitous in nature (flocks of birds, herds of sheep, crowds, ...). Their mathematical modeling poses a number of fascinating questions such as finding the conditions for the emergence of collective motion. In this talk, we will consider a simplified model first proposed by Vicsek and co-authors and consisting of self-propelled particles interacting through local alignment.
We will rigorously study the multiplicity and stability of its equilibria through kinetic theory methods. We will illustrate our findings by numerical simulations.

Mon, 24 Nov 2014
14:15
Oxford-Man Institute

Learning in high dimension with multiscale invariants

Stephane Mallat
(CMAP ecole polytechnique)
Abstract

   Stéphane Mallat

   Ecole Normale Superieure

Learning functionals in high dimension requires to find sources of regularity and invariants, to reduce dimensionality. Stability to actions of diffeomorphisms is a strong property satisfied by many physical functionals and most signal classification problems. We introduce a scattering operator in a path space, calculated with iterated multiscale wavelet transforms, which is invariant to rigid movements and stable to diffeomorphism actions. It provides a Euclidean embedding of geometric distances and a representation of stationary random processes. Applications will be shown for image classification and to learn quantum chemistry energy functionals.

Mon, 24 Nov 2014

12:00 - 13:00
L5

Local moduli for the Strominger system and holomorphic Courant algebroids

Mario Garcia Fernandez
(ICMAT Madrid)
Abstract

I will give an overview of ongoing joint work with R. Rubio and C. Tipler, in which we study the moduli problem for the Strominger system of equations. Building on the work of De la Ossa and Svanes and, independently, of Anderson, Gray and Sharpe, we construct an elliptic complex whose first cohomology group is the space of infinitesimal deformations of a solution of the strominger system. I will also discuss an intriguing link between this moduli problem and a moduli problem for holomorphic Courant algebroids over Calabi-Yau threefolds. Finally, we will see how the problem for the Strominger system embeds naturally in generalized geometry, and discuss some perspectives of this approach.

Fri, 21 Nov 2014
16:30
L2

The Mathematics of Non-Locality and Contextuality

Samson Abramsky
(Dept of Computer Science - University of Oxford)
Abstract

Quantum Mechanics presents a radically different perspective on physical reality compared with the world of classical physics. In particular, results such as the Bell and Kochen-Specker theorems highlight the essentially non-local and contextual nature of quantum mechanics. The rapidly developing field of quantum information seeks to exploit these non-classical features of quantum physics to transcend classical bounds on information processing tasks.

In this talk, we shall explore the rich mathematical structures underlying these results. The study of non-locality and contextuality can be expressed in a unified and generalised form in the language of sheaves or bundles, in terms of obstructions to global sections. These obstructions can, in many cases, be witnessed by cohomology invariants. There are also strong connections with logic. For example, Bell inequalities, one of the major tools of quantum information and foundations, arise systematically from logical consistency conditions.

These general mathematical characterisations of non-locality and contextuality also allow precise connections to be made with a number of seemingly unrelated topics, in classical computation, logic, and natural language semantics. By varying the semiring in which distributions are valued, the same structures and results can be recognised in databases and constraint satisfaction as in probability models arising from quantum mechanics. A rich field of contextual semantics, applicable to many of the situations where the pervasive phenomenon of contextuality arises, promises to emerge.

Fri, 21 Nov 2014

14:30 - 15:45
L2

The History of Mathematics in 300 Stamps

Robin Wilson
(Open University)
Abstract

The entire history of mathematics in one hour, as illustrated by around 300 postage stamps featuring mathematics and mathematicians from across the world.

From Euclid to Euler, from Pythagoras to Poincaré, and from Fibonacci to the Fields Medals, all are featured in attractive, charming and sometimes bizarre stamps. No knowledge of mathematics or philately required.

Fri, 21 Nov 2014

14:15 - 15:15
C1

Modelling Volcanic Plumes

Mark Woodhouse
(University of Bristol)
Abstract

Explosive volcanic eruptions often produce large amounts of ash that is transported high into the atmosphere in a turbulent buoyant plume.  The ash can be spread widely and is hazardous to aircraft causing major disruption to air traffic.  Recent events, such as the eruption of Eyjafjallajokull, Iceland, in 2010 have demonstrated the need for forecasts of ash transport to manage airspace.  However, the ash dispersion forecasts require boundary conditions to specify the rate at which ash is delivered into the atmosphere.

 

Models of volcanic plumes can be used to describe the transport of ash from the vent into the atmosphere.  I will show how models of volcanic plumes can be developed, building on classical fluid mechanical descriptions of turbulent plumes developed by Morton, Taylor and Turner (1956), and how these are used to determine the volcanic source conditions.  I will demonstrate the strong atmospheric controls on the buoyant plume rise.  Typically steady models are used as solutions can be obtained rapidly, but unsteadiness in the volcanic source can be important.  I'll discuss very recent work that has developed unsteady models of volcanic plumes, highlighting the mathematical analysis required to produce a well-posed mathematical description.

Fri, 21 Nov 2014

13:00 - 14:00
L6

tba

There will be no seminar in Week 6.
Fri, 21 Nov 2014

10:00 - 11:00
L5

Workshop with Sharp - Two Modelling Problems: (i) Freezing Particle-Containing Liquids and (ii)Llithium/Sodium Batteries

Abstract

Abstract:

(i) We consider the modelling of freezing of fluids which contain particulates and fibres (imagine orange juice “with bits”) flowing in channels. The objective is to design optimum geometry/temperatures to accelerate freezing.

(ii) We present the challenge of setting-up a model for lithium or sodium ion stationary energy storage cells and battery packs to calculate the gravimetric and volumetric energy density of the cells and cost. Depending upon the materials, electrode content, porosity, packing electrolyte and current collectors. There is a model existing for automotive called Batpac.