Mon, 11 Nov 2019
15:45
L6

The Witt vectors with coefficients

Emanuele Dotto
(University of Warwick)
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Mon, 11 Nov 2019

15:45 - 16:45
L3

On a probabilistic interpretation of the parabolic-parabolic Keller Segel equations

MILICA TOMASEVIC
(Ecole Polytechnique Paris)
Abstract

The Keller Segel model for chemotaxis is a two-dimensional system of parabolic or elliptic PDEs.
Motivated by the study of the fully parabolic model using probabilistic methods, we give rise to a non linear SDE of McKean-Vlasov type with a highly non standard and singular interaction. Indeed, the drift of the equation involves all the past of one dimensional time marginal distributions of the process in a singular way. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: at each time each particle interacts with all the past of the other ones by means of a highly singular space-time kernel.

In this talk, we will analyse the above probabilistic interpretation in $d=1$ and $d=2$.

Mon, 11 Nov 2019

14:15 - 15:15
L3

A decomposition of the Brownian excursion

ANTON WAKOLBINGER
(University of Frankfurt)
Abstract

We discuss a realizationwise correspondence between a Brownian  excursion (conditioned to reach height one) and a triple consisting of

(1) the local time profile of the excursion,

(2) an array of independent time-homogeneous Poisson processes on the real line, and

(3) a fair coin tossing sequence,  where (2) and (3) encode the ordering by height respectively the left-right ordering of the subexcursions.

The three components turn out to be independent,  with (1) giving a time change that is responsible for the time-homogeneity of the Poisson processes.

 By the Ray-Knight theorem, (1) is the excursion of a Feller branching diffusion;  thus the metric structure associated with (2), which generates the so-called lookdown space, can be seen as representing the genealogy underlying the Feller branching diffusion. 

Because of the independence of the three components, up to a time change the distribution of this genealogy does not change under a conditioning on the local time profile. This gives also a natural access to genealogies of continuum populations under competition,  whose population size is modeled e.g. by the Fellerbranching diffusion with a logistic drift.

The lecture is based on joint work with Stephan Gufler and Goetz Kersting.

 

Mon, 11 Nov 2019

14:15 - 15:15
L4

Green's function estimates and the Poisson equation

Ovidiu Munteanu
(University of Connecticut)
Further Information

 

 

Abstract

The Green's function of the Laplace operator has been widely studied in geometric analysis. Manifolds admitting a positive Green's function are called nonparabolic. By Li and Yau, sharp pointwise decay estimates are known for the Green's function on nonparabolic manifolds that have nonnegative Ricci
curvature. The situation is more delicate when curvature is not nonnegative everywhere. While pointwise decay estimates are generally not possible in this
case, we have obtained sharp integral decay estimates for the Green's function on manifolds admitting a Poincare inequality and an appropriate (negative) lower bound on Ricci curvature. This has applications to solving the Poisson equation, and to the study of the structure at infinity of such manifolds.

Mon, 11 Nov 2019
12:45

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory

Nikolay Gromov
(King's College London)
Abstract

We present a first-principles derivation of a weak-strong duality between the four-dimensional fishnet theory in the planar limit and a discretized string-like model living in AdS5. At strong coupling, the dual description becomes classical and we demonstrate explicitly the classical integrability of the model. We test our results by reproducing the strong coupling limit of the 4-point correlator computed before non-perturbatively from the conformal partial wave expansion. Next, by applying the canonical quantization procedure with constraints, we show that the model describes a quantum integrable chain of particles propagating in AdS5. Finally, we reveal a discrete reparametrization symmetry of the model and reproduce the spectrum when known analytically. Due to the simplicity of our model, it could provide an ideal playground for holography. Furthermore, since the fishnet model and N=4 SYM theory are continuously linked our consideration could shed light on the derivation of AdS/CFT for the latter. This talk is based on recent work with Amit Sever.

Fri, 08 Nov 2019

16:00 - 17:00
L1

North Meets South

Joseph Keir and Priya Subramanian
Abstract

Speaker: Joseph Keir (North)
Title: Dispersion (or not) in nonlinear wave equations
Abstract: Wave equations are ubiquitous in physics, playing central roles in fields as diverse as fluid dynamics, electromagnetism and general relativity. In many cases of these wave equations are nonlinear, and consequently can exhibit dramatically different behaviour when their solutions become large. Interestingly, they can also exhibit differences when given arbitrarily small initial data: in some cases, the nonlinearities drive solutions to grow larger and even to blow up in a finite time, while in other cases solutions disperse just like the linear case. The precise conditions on the nonlinearity which discriminate between these two cases are unknown, but in this talk I will present a conjecture regarding where this border lies, along with some conditions which are sufficient to guarantee dispersion.

Speaker: Priya Subramanian (South)
Title: What happens when an applied mathematician uses algebraic geometry?
Abstract: A regular situation that an applied mathematician faces is to obtain the equilibria of a set of differential equations that govern a system of interest. A number of techniques can help at this point to simplify the equations, which reduce the problem to that of finding equilibria of coupled polynomial equations. I want to talk about how homotopy methods developed in computational algebraic geometry can solve for all solutions of coupled polynomial equations non-iteratively using an example pattern forming system. Finally, I will end with some thoughts on what other 'nails' we might use this new shiny hammer on.

 

Fri, 08 Nov 2019

15:00 - 16:00
N3.12

Simplicial Mixture Models - Fitting topology to data

James Griffin
(University of Coventry)
Abstract

Lines and planes can be fitted to data by minimising the sum of squared distances from the data to the geometric object.  But what about fitting objects from topology such as simplicial complexes?  I will present a method of fitting topological objects to data using a maximum likelihood approach, generalising the sum of squared distances.  A simplicial mixture model (SMM) is specified by a set of vertex positions and a weighted set of simplices between them.  The fitting process uses the expectation-maximisation (EM) algorithm to iteratively improve the parameters.

Remarkably, if we allow degenerate simplices then any distribution in Euclidean space can be approximated arbitrarily closely using a SMM with only a small number of vertices.  This theorem is proved using a form of kernel density estimation on the n-simplex.

Fri, 08 Nov 2019

14:00 - 15:00
L6

The role of ice shelves for marine ice sheet stability

Marianne Haseloff
(University of Oxford)
Further Information

The West Antarctic Ice Sheet is a marine ice sheet that rests on a bed below sea level. The stability of a marine ice sheet and its contribution to future sea level rise are controlled by the dynamics of the grounding line, where the grounded ice sheet transitions into a floating ice shelf. Recent observations suggest that Antarctic ice shelves experience widespread thinning due to contact with warming ocean waters, but quantifying the effect of these changes on marine ice sheet stability and extent remains a major challenge for both observational and modelling studies. In this talk, I show that grounding line stability of laterally confined marine ice sheets and outlet glaciers is governed by ice shelf dynamics, in particular calving front and melting conditions. I will discuss the implications of this dependence for projections of the future evolution of the West Antarctic Ice Sheet.

Fri, 08 Nov 2019

14:00 - 15:00
L1

Banish imposter feelings (and trust you belong!)

Maureen Freed and Ben Walker
Abstract

How can it be that so many clever, competent and capable people can feel that they are just one step away from being exposed as a complete fraud? Despite evidence that they are performing well they can still have that lurking fear that at any moment someone is going to tap them on the shoulder and say "We need to have a chat". If you've ever felt like this, or you feel like this right now, then this Friday@2 session might be of interest to you. We'll explore what "Imposter Feelings" are, why we get them and steps you can start to take to help yourself and others. This event is likely to be of interest to undergraduates and MSc students at all stages. 

Fri, 08 Nov 2019

12:00 - 13:00
L4

Algebra, Geometry and Topology of ERK Enzyme Kinetics

Heather Harrington
(Mathematical Institute (University of Oxford))
Abstract

In this talk I will analyse ERK time course data by developing mathematical models of enzyme kinetics. I will present how we can use differential algebra and geometry for model identifiability, and topological data analysis to study these the dynamics of ERK. This work is joint with Lewis Marsh, Emilie Dufresne, Helen Byrne and Stanislav Shvartsman.

Fri, 08 Nov 2019

10:00 - 11:00
L3

Financial modelling and utilisation of a diverse range of data sets in oil markets

Milos Krkic
(BP IST Data Strategists)
Abstract

We will present three problems that we are interested in:

Forecast of volatility both at the instrument and portfolio level by combining a model based approach with data driven research
We will deal with additional complications that arise in case of instruments that are highly correlated and/or with low volumes and open interest.
Test if volatility forecast improves metrics or can be used to derive alpha in our trading book.

Price predication using physical oil grades data
Hypothesis:
Physical markets are most reflective of true fundamentals. Derivative markets can deviate from fundamentals (and hence physical markets) over short term time horizons but eventually converge back. These dislocations would represent potential trading opportunities.
The problem:
Can we use the rich data from the physical market prices to predict price changes in the derivative markets?
Solution would explore lead/lag relationships amongst a dataset of highly correlated features. Also explore feature interdependencies and non-linearities.
The prediction could be in the form of a price target for the derivative (‘fair value’), a simple direction without magnitude, or a probabilistic range of outcomes.

Modelling oil balances by satellite data
The flow of oil around the world from being extracted, refined, transported and consumed, forms a very large dynamic network. At both regular and irregular intervals, we can make noisy measurements of the amount of oil at certain points in the network.
In addition, we have general macro-economic information about the supply and demand of oil in certain regions.
Based on that information, with general information about the connections between nodes in the network i.e. the typical rate of transfer, one can build a general model for how oil flows through the network.
We would like to build a probabilistic model on the network, representing our belief about the amount of oil stored at each of our nodes, which we refer to as balances.
We want to focus on particular parts of the network where our beliefs can be augmented by satellite data, which can be done by focusing on a sub network containing nodes that satellite measurements can be applied to.

Thu, 07 Nov 2019
16:00
L6

Number fields with prescribed norms

Rachel Newton
(Reading)
Abstract

Let G be a finite abelian group, let k be a number field, and let x be an element of k. We count Galois extensions K/k with Galois group G such that x is a norm from K/k. In particular, we show that such extensions always exist. This is joint work with Christopher Frei and Daniel Loughran.

Thu, 07 Nov 2019

16:00 - 17:30
L3

Liquid droplets on a surface

Andrew Archer
(Loughborough University)
Abstract

The talk will begin with an introduction to the science of what determines the behaviour of a liquid on a on a surface and giving an overview of some of the different theories that can be used to describe the shape and structure of the liquid in the drop. These include microscopic density functional theory (DFT), which describes the liquid structure on the scale of the individual liquid molecules, and mesoscopic thin film equation (PDE) and kinetic Monte-Carlo models. A DFT based method for calculating the binding potential ?(h) for a film of liquid on a solid surface, where h is the thickness of the liquid film, will be presented. The form of ?(h) determines whether or not the liquid wets the surface. Calculating drop profiles using both DFT and also from inputting ?(h) into the mesoscopic theory and comparing quantities such as the contact angle and the shape of the drops, we find good agreement between the two methods, validating the coarse-graining. The talk will conclude with a discussion of some recent work on modelling evaporating drops with applications to inkjet printing.

Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

Thu, 07 Nov 2019

14:30 - 15:30
N3.12

5d SCFT (part 1)

Max Hubner and Marieke Van Beest
Thu, 07 Nov 2019

14:00 - 15:00
L4

A posteriori error analysis for domain decomposition

Simon Tavener
(Colorado State University)
Abstract

Domain decomposition methods are widely employed for the numerical solution of partial differential equations on parallel computers. We develop an adjoint-based a posteriori error analysis for overlapping multiplicative Schwarz domain decomposition and for overlapping additive Schwarz. In both cases the numerical error in a user-specified functional of the solution (quantity of interest), is decomposed into a component that arises due to the spatial discretization and a component that results from of the finite iteration between the subdomains. The spatial discretization error can be further decomposed in to the errors arising on each subdomain. This decomposition of the total error can then be used as part of a two-stage approach to construct a solution strategy that efficiently reduces the error in the quantity of interest.

Thu, 07 Nov 2019

12:00 - 13:00
L4

A new Federer-type characterization of sets of finite perimeter

Panu Lahti
(University of Augsburg)
Abstract

Federer’s characterization, which is a central result in the theory of functions of bounded variation, states that a set is of finite perimeter if and only if n−1-dimensional Hausdorff measure of the set's measure-theoretic boundary is finite. The measure-theoretic boundary consists of those points where both the set and its complement have positive upper density. I show that the characterization remains true if the measure-theoretic boundary is replaced by a smaller boundary consisting of those points where the lower densities of both the set and its complement are at least a given positive constant.

Thu, 07 Nov 2019
11:30
C4

Functional Modular Zilber-Pink with Derivatives

Vahagn Aslanyan
(UEA)
Abstract

I will present Pila's Modular Zilber-Pink with Derivatives (MZPD) conjecture, which is a Zilber-Pink type statement for the j-function and its derivatives, and discuss some weak and functional/differential analogues. In particular, I will define special varieties in each setting and explain the relationship between them. I will then show how one can prove the aforementioned weak/functional/differential MZPD statements using the Ax-Schanuel theorem for the j-function and its derivatives and some basic complex analytic geometry. Note that I gave a similar talk in Oxford last year (where I discussed a differential MZPD conjecture and proved it assuming an Existential Closedness conjecture for j), but this talk is going to be significantly different from that one (the approach presented in this talk will be mostly complex analytic rather than differential algebraic, and the results will be unconditional).

Wed, 06 Nov 2019
16:00
C1

JSJ Decompositions of Groups

Sam Shepherd
(University of Oxford)
Abstract

A graph of groups decomposition is a way of splitting a group into smaller and hopefully simpler groups. A natural thing to try and do is to keep splitting until you can't split anymore, and then argue that this decomposition is unique. This is the idea behind JSJ decompositions, although, as we shall see, the strength of the uniqueness statement for such a decomposition varies depending on the class of groups that we restrict our edge groups to

Tue, 05 Nov 2019

15:30 - 16:30
L4

Hilbert schemes of points of ADE surface singularities

Balazs Szendroi
(Oxford)
Abstract

I will discuss some recent results around Hilbert schemes of points on singular surfaces, obtained in joint work with Craw, Gammelgaard and Gyenge, and their connection to combinatorics (of coloured partitions) and representation theory (of affine Lie algebras and related algebras such as their W-algebra). 

Tue, 05 Nov 2019

15:30 - 16:30
L6

Some new perspectives on moments of random matrices

Neil O’Connell
(University College Dublin)
Abstract

The study of 'moments' of random matrices (expectations of traces of powers of the matrix) is a rich and interesting subject, with fascinating connections to enumerative geometry, as discovered by Harer and Zagier in the 1980’s. I will give some background on this and then describe some recent work which offers some new perspectives (and new results). This talk is based on joint work with Fabio Deelan Cunden, Francesco Mezzadri and Nick Simm.

Tue, 05 Nov 2019
14:30
L5

Parameter Optimization in a Global Ocean Biogeochemical Model

Sophy Oliver
(Oxford)
Abstract

Ocean biogeochemical models used in climate change predictions are very computationally expensive and heavily parameterised. With derivatives too costly to compute, we optimise the parameters within one such model using derivative-free algorithms with the aim of finding a good optimum in the fewest possible function evaluations. We compare the performance of the evolutionary algorithm CMA-ES which is a stochastic global optimization method requiring more function evaluations, to the Py-BOBYQA and DFO-LS algorithms which are local derivative-free solvers requiring fewer evaluations. We also use initial Latin Hypercube sampling to then provide DFO-LS with a good starting point, in an attempt to find the global optimum with a local solver. This is joint work with Coralia Cartis and Samar Khatiwala.
 

Tue, 05 Nov 2019

14:15 - 15:15
L4

Axiomatizability and profinite groups

Dan Segal
(Oxford University)
Abstract

A mathematical structure is `axiomatizable' if it is completely determined by some family of sentences in a suitable first-order language. This idea has been explored for various kinds of structure, but I will concentrate on groups. There are some general results (not many) about which groups are or are not axiomatizable; recently there has been some interest in the sharper concept of 'finitely axiomatizable' or FA - that is, when only a finite set of sentences (equivalently, a single sentence) is allowed.

While an infinite group cannot be FA, every finite group is so, obviously. A profinite group is kind of in between: it is infinite (indeed, uncountable), but compact as a topological group; and these groups share many properties of finite groups, though sometimes for rather subtle reasons. I will discuss some recent work with Andre Nies and Katrin Tent where we prove that certain kinds of profinite group are FA among profinite groups. The methods involve a little model theory, and quite a lot of group theory.