Thu, 09 May 2019
16:00
C4

Orientability of moduli spaces of coherent sheaves on Calabi–Yau 4-folds

Jacob Gross
(Oxford University)
Abstract

Gauge-theoretic invariants such as Donaldson or Seiberg–Witten invariants of 4-manifolds, Casson invariants of 3-manifolds, Donaldson–Thomas invariants of Calabi–Yau 3- and 4-folds, and putative Donaldson–Segal invariants of G_2 manifolds are defined by constructing a moduli space of solutions to an elliptic PDE as a (derived) manifold and integrating the (virtual) fundamental class against cohomology classes. For a moduli space to have a (virtual) fundamental class it must be compact, oriented, and (quasi-)smooth. We first describe a general framework for addressing orientability of gauge-theoretic moduli spaces due to Joyce–Tanaka–Upmeier. We then show that the moduli stack of perfect complexes of coherent sheaves on a Calabi–Yau 4-fold X is a homotopy-theoretic group completion of the topological realisation of the moduli stack of algebraic vector bundles on X. This allows one to extend orientations on the locus of algebraic vector bundles to the boundary of the (compact) moduli space of coherent sheaves using the universal property of homotopy-theoretic group completions. This is a necessary step in constructing Donaldson–Thomas invariants of Calabi–Yau 4-folds. This is joint work with Yalong Cao and Dominic Joyce.

Thu, 09 May 2019

16:00 - 17:30
L4

Deep Learning Volatility

Blanka Horvath
(Kings College London)
Abstract

We present a consistent neural network based calibration method for a number of volatility models-including the rough volatility family-that performs the calibration task within a few milliseconds for the full implied volatility surface.
The aim of neural networks in this work is an off-line approximation of complex pricing functions, which are difficult to represent or time-consuming to evaluate by other means. We highlight how this perspective opens new horizons for quantitative modelling: The calibration bottleneck posed by a slow pricing of derivative contracts is lifted. This brings several model families (such as rough volatility models) within the scope of applicability in industry practice. As customary for machine learning, the form in which information from available data is extracted and stored is crucial for network performance. With this in mind we discuss how our approach addresses the usual challenges of machine learning solutions in a financial context (availability of training data, interpretability of results for regulators, control over generalisation errors). We present specific architectures for price approximation and calibration and optimize these with respect different objectives regarding accuracy, speed and robustness. We also find that including the intermediate step of learning pricing functions of (classical or rough) models before calibration significantly improves network performance compared to direct calibration to data.

Thu, 09 May 2019

16:00 - 17:30
L3

Self-similarly expanding regions of phase change yield cavitational instabilities and model deep earthquakes

Professor Xanthippi Markenscoff
(UC San Diego)
Further Information

Department of Mechanical and Aerospace Engineering University of California, San Diego La Jolla, CA 92093-0411 

@email 

Abstract

[[{"fid":"54621","view_mode":"preview","fields":{"format":"preview"},"link_text":"Prof Markenscoff Paper.pdf","type":"media","field_deltas":{"2":{"format":"preview"}},"attributes":{"class":"media-element file-preview","data-delta":"2"}}]]

Abstract

The dynamical fields that emanate from self-similarly expanding ellipsoidal regions undergoing phase change (change in density, i.e., volume collapse, and change in moduli) under pre-stress, constitute the dynamic generalization of the seminal Eshelby inhomogeneity problem (as an equivalent inclusion problem), and they consist of pressure, shear, and M waves emitted by the surface of the expanding ellipsoid and yielding Rayleigh waves in the crack limit. They may constitute the model of Deep Focus Earthquakes (DFEs) occurring under very high pressures and due to phase change. Two fundamental theorems of physics govern the phenomenon, the Cauchy-Kowalewskaya theorem, which based on dimensional analysis and analytic properties alone, dictates that there is zero particle velocity in the interior, and Noether’s theorem that extremizes (minimizes for stability) the energy spent to move the boundary so that it does not become a sink (or source) of energy, and determines the self-similar shape (axes expansion speeds). The expression from Noether’s theorem indicates that the expanding region can be planar, thus breaking the symmetry of the input and the phenomenon manifests itself as a newly discovered one of a “dynamic collapse/ cavitation instability”, where very large strain energy condensed in the very thin region can escape out. In the presence of shear, the flattened very thin ellipsoid (or band) will be oriented in space so that the energy due to phase change under pre-stress is able to escape out at minimum loss condensed in the core of dislocations gliding out on the planes where the maximum configurational force (Peach-Koehler) is applied on them. Phase change occurring planarly produces in a flattened expanding ellipdoid a new defect present in the DFEs. The radiation patterns are obtained in terms of the equivalent to the phase change six eigenstrain components, which also contain effects due to planarity through the Dynamic Eshelby Tensor for the flattened ellipsoid. Some models in the literature of DFEs are evaluated and excluded on the basis of not having the energy to move the boundary of phase discontinuity. Noether’s theorem is valid in anisotropy and nonlinear elasticity, and the phenomenon is independent of scales, valid from the nano to the very large ones, and applicable in general to other dynamic phenomena of stress induced martensitic transformations, shear banding, and amorphization.

 

Thu, 09 May 2019

14:00 - 15:00
L4

Quasi-optimal and pressure robust discretizations of the Stokes equations.

Dr Pietro Zanotti
(TU Dortmund)
Abstract

ABSTRACT

We approximate the solution of the stationary Stokes equations with various conforming and nonconforming inf-sup stable pairs of finite element spaces on simplicial meshes. Based on each pair, we design a discretization that is quasi-optimal and pressure robust, in the sense that the velocity H^1-error is proportional to the best H^1-error to the analytical velocity. This shows that such a property can be achieved without using conforming and divergence-free pairs. We bound also the pressure L^2-error, only in terms of the best approximation errors to the analytical velocity and the analytical pressure. Our construction can be summarized as follows. First, a linear operator acts on discrete velocity test functions, before the application of the load functional, and maps the discrete kernel into the analytical one.

Second, in order to enforce consistency, we  possibly employ a new augmented Lagrangian formulation, inspired by Discontinuous Galerkin methods.

Thu, 09 May 2019

13:00 - 14:00
L4

Talks by Dphil students

Theerawat Bhudisaksang & Yufei Zhang (DPhil students)
Abstract

Theerawat Bhudisaksang
----------------------

Adaptive robust control with statistical learning

We extend the adaptive robust methodology introduced in Bielecki et al. and propose a continuous-time version of their approach. Bielecki et al. consider a model in which the distribution of the underlying (observable) process depends on unknown parameters and the agent uses observations of the process to estimate the parameter values. The model is made robust to misspecification because the agent employs a set of ambiguity measures that contains measures where the parameter are inside a confidence region of their estimator. In our extension, we construct the set of ambiguity measures such that each probability measure in the set has a semimartingale characterisation lies in a restricted set. Finally, we prove the dynamic programming principle of the adaptive robust control in continuous time problem using measurable selection theorems, and we show that the value function can be characterised as the solution of a non-linear partial differential equation.

Yufei Zhang
-----------

A neural network based policy iteration algorithm with global convergence of values and controls for stochastic games on domains

In this talk, we propose a class of neural network based numerical schemes for solving semi-linear Hamilton-Jacobi-Bellman-Isaacs (HJBI) boundary value problems which arise naturally from exit time problems of diffusion processes with controlled drift. We exploit a policy iteration to reduce the semilinear problem into a sequence of linear Dirichlet problems, which are subsequently approximated by a multilayer feedforward neural network ansatz. We establish that the numerical solutions converge globally in the H^2-norm, and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration for the HJBI equation. Moreover, we construct the optimal feedback controls from the numerical value functions and deduce convergence. The numerical schemes and convergence results are then extended to HJBI boundary value problems corresponding to controlled diffusion processes with oblique boundary reflection. Numerical experiments on the stochastic Zermelo navigation problem are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method. 
 

Thu, 09 May 2019

11:00 - 12:00
L4

Finite element exterior calculus with smoother finite element spaces

Johnny Guzmán
(Brown University)
Abstract

The finite element exterior calculus is a powerful approach to study many problems under the same lens. The canonical finite element spaces (see Arnold, Falk and Winther) are tied together with an exact sequence and have the required smoothness to define the exterior derivatives weakly. However, some applications require spaces that are more smooth (e.g. plate bending problems, incompressible flows). In this talk we will discuss some recent results in developing finite element spaceson simplicial triangulations with more smoothness, that also fit in an exact sequence. This is joint work with Guosheng Fu, Anna Lischke and Michael Neilan.

Wed, 08 May 2019
11:00
N3.12

Completing Kronecker-Weber (via completing the rationals)

Jay Swar
(University of Oxford)
Abstract

KW states that every finite abelian extension of the rationals is contained in a cyclotomic extension. In a previous talk, this was reduced to considering cyclic extensions of the local fields Q_p of prime power order l^r. When l\neq p, general theory is sufficient, however for l=p, more specific (although not necessarily more abstruse) descriptions become necessary.
I will focus on the simple structure of Q_p's extensions to obstruct the remaining obstructions to KW (and hopefully provoke some interest in local fields in those less familiar). Time-permitting, I will talk about this theorem in the context of class field theory and/or Hilbert's 12th problem.

Tue, 07 May 2019

15:30 - 16:30
L4

Toric degenerations of Grassmannians

Fatemeh Mohammadi
(Bristol)
Abstract

Many toric degenerations and integrable systems of the Grassmannians Gr(2, n) are described by trees, or equivalently subdivisions of polygons. These degenerations can also be seen to arise from the cones of the tropicalisation of the Grassmannian. In this talk, I focus on particular combinatorial types of cones in tropical Grassmannians Gr(k,n) and prove a necessary condition for such an initial degeneration to be toric. I will present several combinatorial conjectures and computational challenges around this problem.  This is based on joint works with Kristin Shaw and with Oliver Clarke.

Tue, 07 May 2019

14:30 - 15:00
L5

Fireshape, a look under the hood

Alberto Paganini
(Oxford)
Abstract

Fireshape is a shape optimization library based on finite elements. In this talk I will describe how Florian Wechsung and I developed Fireshape and will share my reflections on lessons learned through the process.

Tue, 07 May 2019

14:30 - 15:30
L6

Around Brooks' theorem

Marthe Bonamy
Further Information

In this talk, we will discuss various results around Brooks' theorem: a graph has chromatic number at most its maximum degree, unless it is a clique or an odd cycle. We will consider stronger variants and local versions, as well as the structure of the solution space of all corresponding colorings.

Tue, 07 May 2019

14:00 - 14:30
L5

Sharp error bounds for Ritz vectors and approximate singular vectors

Yuji Nakatsukasa
(Oxford)
Abstract

We derive sharp bounds for the accuracy of approximate eigenvectors (Ritz vectors) obtained by the Rayleigh-Ritz process for symmetric eigenvalue problems. Using information that is available or easy to estimate, our bounds improve the classical Davis-Kahan sin-theta theorem by a factor that can be arbitrarily large, and can give nontrivial information even when the sin-theta theorem suggests that a Ritz vector might have no accuracy at all. We also present extensions in three directions, deriving error bounds for invariant subspaces, singular vectors and subspaces computed by a (Petrov-Galerkin) projection SVD method, and eigenvectors of self-adjoint operators on a Hilbert space.

Tue, 07 May 2019

12:00 - 13:00
C4

Selected aspects of commuting in the vicinity of Warsaw

Mariola Chrzanowska
(Warsaw University of Life Sciences)
Abstract

Commuting concerns people’s spatial behaviour resulting from the geographic separation of home and workplace and is connected with their willingness to seek economic opportunities outside their place of residence (Rouwendal J., Nijkamp P., 2004). Such opportunities are usually found in the urban areas, so this phenomenon is often a subject of urban studies or research focusing on city centres (Drejerska N., Chrzanowska M., 2014). In literature, commuting patterns are used to determine the boundaries of local and regional labour markets. Furthermore, labour market is one of the most important features for the delimitation of functional regions, as commuting involves not only working outside one’s place of residence but also, among other things, using various services offered there, from shopping to health or cultural services. Taking this into account, it can be stated that commuting is an important characteristic of relations between territories, and these relations form complex networks.

People decide to commute to work for various reasons. Most commuters travel from a small town, village or rural area to a city or town where they have a wider range of employment opportunities. However, people differ in their attitudes toward commuting. While some people find it troublesome, others enjoy their daily travel. There are also people who regard commuting as the necessary condition for supporting themselves and their families. Therefore, commuting is an important factor that should be taken into account in the research on the quality of life and quality of work.

The main goals of this presentation is to identify and analyse relations between communities (municipalities) from the perspective of labour market, especially commuting in the vicinity of Warsaw, Data on the number of commuters come from the Central Statistical Office of Poland and cover the year 2011.

 

 Bibliography

Drejerska N., Chrzanowska M., 2014: Commuting in the Warsaw suburban area from a spatial perspective – an example of empirical research, Acta Universitatis Lodziensis. Folia Oeconomica 2014, Vol. 6, no 309, pp. 87-96.

 

Rouwendal J., Nijkamp P., 2004: Living in Two Worlds: A Review of Home-to-Work Decisions, Growth and Change, Volume 35, Issue 3, p. 287.

Tue, 07 May 2019
12:00
L4

Single-valued integration and superstring amplitudes

Clement Dupont
(Montpellier)
Abstract

The classical theory of integration concern integrals of differential forms over domains of integration. In geometric terms, this corresponds to a canonical pairing between de Rham cohomology and singular homology. For varieties defined over the reals, one can make use of complex conjugation to define a real-valued pairing between de Rham cohomology and its dual, de Rham homology. The corresponding theory of integration, that we call single-valued integration, pairs a differential form with a `dual differential form’. We will explain how single-valued periods are computed and give an application to superstring amplitudes in genus zero. This is joint work with Francis Brown.
 

Tue, 07 May 2019
11:45
C3

When Zeno met Pontryagin: a curious phenomenon in optimal control

Davin Lunz
((Oxford University))
Further Information

 

 
Abstract

I plan to present a brief introduction to optimal control theory (no background knowledge assumed), and discuss a fascinating and oft-forgotten family of problems where the optimal control behaves very strangely; it changes state infinitely often in finite time. This causes havoc in practice, and even more so in the literature.
 

Mon, 06 May 2019

16:00 - 17:00
L4

Hyperbolic hydrodynamic limit of a anharmonic chain under boundary tension

Stefano Marchesani
(Gran Sasso Science Institute GSSI)
Abstract

"We study the hydrodynamic limit for the isothermal dynamics of an anharmonic chain under hyperbolic space-time scaling under varying tension. The temperature is kept constant by a contact with a heat bath, realised via a stochastic momentum-preserving noise added to the dynamics. The noise is designed to be large at the microscopic level, but vanishing in the macroscopic scale. Boundary conditions are also considered: one end of the chain is kept fixed, while a time-varying tension is applied to the other end. We show that the volume stretch and momentum converge to a weak solution of the isothermal Euler equations in Lagrangian coordinates with boundary conditions."

Mon, 06 May 2019
15:45
L6

Holomorphic curves and Seiberg-Witten invariants for 4-dimensional cobordisms

Yi-Jen Lee
(The Chinese University of Hong Kong)
Abstract

We will discuss a variant of Taubes’s Seiberg-Witten to Gromov theorem in the context of a 4-manifold with cylindrical ends, equipped with a nontrivial harmonic 2-form. This harmonic 2-form is allowed to be asymptotic to 0 on some (but not all) of its ends, and may have nondegenerate zeros along 1-submanifolds. Corollaries include various positivity results; some simple special cases of these constitute a key ingredient in Kutluhan-Lee-Taubes’s proof of HM = HF (Monopole Floer homology equals Heegaard Floer homology). The aforementioned general theorem is motivated by (potential) extensions of the HM = HF and Lee-Taubes’s HM = PFH (Periodic Floer homology) theorems.

Fri, 03 May 2019

16:00 - 17:00
L1

Dealing with journals, editors and referees

(University of Oxford)
Abstract


What actually happens when you submit an article to a journal? How does refereeing work in practice? How can you keep editors happy as an author or referee? How does one become a referee or editor? What does 'publication' mean with the internet and arXiv?

In this panel we'll discuss what happens between finishing writing a mathematical paper and its final (?) publication, looking at the various roles that people play and how they work best.

Featuring Helen Byrne, Rama Cont and Jonathan Pila.

 

Fri, 03 May 2019

15:00 - 16:00
N3.12

Persistence of Random Structures

Primoz Skraba
(Queen Mary University London)
Abstract

This talk will cover the connections of persistence with the topology of random structures. This includes an overview of various results from stochastic topology as well as the role persistence ideas  play in the analysis. This will include results on the maximally persistent classes and minimum spanning acycles/generalised trees.

Fri, 03 May 2019

14:00 - 15:00
L1

Mathematics: the past, present and future - "When Algebra met Topology"

Prof Ulrike Tillmann
Abstract

This year sees the 100th anniversary of Emmy Noether receiving her Habilitation and thus becoming the first women to be granted the right to teach and lecture at a university in Prussia (now Germany).  Noether shaped modern algebra and her influence was felt in many other fields including topology.


We will start by exploring what algebraic topology is, how the subject was shaped by algebra (under the influence of Noether), before considering some current challenges and applications.

Fri, 03 May 2019

14:00 - 15:00
L3

Biomechanics can provide a new perspective on microbiology

Professor Takuji Ishikawa
(Dept. Finemechanics Grad. Sch. Eng Tohoku University)
Abstract

Despite their tiny size, microorganisms play a huge role in many biological, medical, and engineering phenomena. For example, massive plankton blooms are an integral part of the oceanic ecosystem. Algal cells incorporate carbon dioxide, which affects global warming. In industry, microorganisms are used in bioreactors to produce food and medicines and to treat sewage. The human body hosts hundreds of microorganism species, and the number of microorganisms in the human body is roughly double the number of cells in the body. In the intestine, approximately 1 kg of enterobacteria form a unique ecosystem, called the gut flora, which plays important roles in digestion and in relation to infection. Because of the considerable influence that microorganisms have on human life, the study of their behavior and function is important.

Recent research has demonstrated the importance of biomechanics in understanding the behavior and functions of microorganisms. For example, red tides can be induced by the interplay between the background flow and swimming cells. A dense suspension of bacteria can generate a coherent structure, which strongly enhances mass transport in a suspension. These phenomena show that the physical environments around cells alter their behavior and biological functions. Such a biomechanical understanding is still lacking in microbiology, and we believe that biomechanics can provide new perspectives on future microbiology.

In this talk, we first introduce some of our studies of the behavior of individual swimming microorganisms near surfaces. We show that hydrodynamic forces can trap cells at liquid–air or liquid–solid interfaces. We then introduce interactions between a pair of swimming microorganisms, because a two-body interaction is the simplest many-body interaction. We show that our mathematical models can describe the interactions between two nearby swimming microorganisms. Collective motions formed by a group of swimming microorganisms are also introduced. We show that some collective motions of microorganisms, such as coherent structures of bacterial suspensions, can be understood in terms of fluid mechanics. We then discuss how cellular-level phenomena can change the rheological and diffusion properties of a suspension. The macroscopic properties of a suspension are strongly affected by mesoscale flow structures, which in turn are strongly affected by the interactions between cells. Hence, a bottom-up strategy, i.e., from a cellular level to a continuum suspension level, represents a natural approach to the study of a suspension of swimming microorganisms. Finally, we discuss whether our understanding of biological functions can be strengthened by the application of biomechanics, and how we can contribute to the future of microbiology.

Thu, 02 May 2019

16:00 - 17:00
L6

Arithmetic quantum chaos and small scale equidistribution

Peter Humphries
(UCL)
Abstract

Berry's random wave conjecture is a heuristic that the eigenfunctions of a classically ergodic system ought to display Gaussian random behaviour, as though they were random waves, in the large eigenvalue limit. We discuss two manifestations of this conjecture for eigenfunctions of the Laplacian on the modular surface: Planck scale mass equidistribution, and an asymptotic for the fourth moment. We will highlight how the resolution of these two problems in this number-theoretic setting involves a delicate understanding of the behaviour of certain families of L-functions.

Thu, 02 May 2019

16:00 - 17:30
L4

Equilibrium asset pricing with transaction costs

Johannes Muhle-Karbe
(Imperial College London)
Abstract


In the first part of the talk, we study risk-sharing equilibria where heterogenous agents trade subject to quadratic transaction costs. The corresponding equilibrium asset prices and trading strategies are characterised by a system of nonlinear, fully-coupled forward-backward stochastic differential equations. We show that a unique solution generally exists provided that the agents’ preferences are sufficiently similar. In a benchmark specification, the illiquidity discounts and liquidity premia observed empirically correspond to a positive relationship between transaction costs and volatility.
In the second part of the talk, we discuss how the model can be calibrated to time series of prices and the corresponding trading volume, and explain how extensions of the model with general transaction costs, for example, can be solved numerically using the deep learning approach of Han, Jentzen, and E (2018).
 (Based on joint works with Martin Herdegen and Dylan Possamai, as well as with Lukas Gonon and Xiaofei Shi)

 
Thu, 02 May 2019
16:00
C4

The Structure and Dimension of Multiplicative Preprojective Algebras

Daniel Kaplan
((Imperial College, London))
Abstract

Multiplicative preprojective algebras (MPAs) were originally defined by Crawley-Boevey and Shaw to encode solutions of the Deligne-Simpson problem as irreducible representations. 
MPAs have recently appeared in the literature from different perspectives including Fukaya categories of plumbed cotangent bundles (Etgü and Lekili) and, similarly, microlocal sheaves 
on rational curves (Bezrukavnikov and Kapronov.) After some motivation, I'll suggest a purely algebraic approach to study these algebras. Namely, I'll outline a proof that MPAs are 
2-Calabi-Yau if Q contains a cycle and an inductive argument to reduce to the case of the cycle itself.