Thu, 05 Feb 2009

16:30 - 17:30
DH 1st floor SR

Scattering waves in elastic waveguides

Karima Khusnutdinova (Loughborough) CANCELLED - WILL NOW BE IN TRINITY TERM 2009
Abstract

Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects?

We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect.

The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.

Thu, 05 Feb 2009

14:30 - 15:30
L3

Generalized traces and modified dimensionsIn this talk I will discuss how to construct generalized traces

Nathan Geer
(Georgia Institute of Technology/Oxford)
Abstract

In this talk I will discuss how to construct generalized traces

and modified dimensions in certain categories of modules. As I will explain

there are several examples in representation theory where the usual trace

and dimension are zero, but these generalized traces and modified dimensions

are non-zero. Such examples include the representation theory of the Lie

algebra sl(2) over a field of positive characteristic and of Lie

superalgebras over the complex numbers. In these examples the modified

dimensions can be interpreted categorically and are closely related to some

basic notions involving the representation theory. This joint work with Jon

Kujawa and Bertrand Patureau.

Thu, 05 Feb 2009
13:00
DH 3rd floor SR

Decision Making and Risky Choice in animals: a biological perspective.

Alex Kacelnik
Abstract

Virtually all decisions taken by living beings, from financial investments to life history, mate choice or anti-predator responses involve uncertainties and inter-temporal trade offs. Thus, hypothesis and formal models from these different fields often have heuristic value across disciplines. I will present theories and experiments about temporal discounting and risky choice originating in behavioural research on birds. Among other topics, I will address empirical observations showing risk aversion for gains and risk proneness for losses, exploring parallels and differences between Prospect Theory, Risk Sensitivity Theory and Scalar Utility Theory.

Thu, 05 Feb 2009

12:30 - 13:30
Gibson 1st Floor SR

Sequential weak continuity of the determinant and the modelling of cavitation and fracture in nonlinear elasticity

Duvan Henao
(University of Oxford)
Abstract

Motivated by the tensile experiments on titanium alloys of Petrinic et al

(2006), which show the formation of cracks through the formation and

coalescence of voids in ductile fracture, we consider the problem of

formulating a variational model in nonlinear elasticity compatible both

with cavitation and with the appearance of discontinuities across

two-dimensional surfaces. As in the model for cavitation of Müller and

Spector (1995) we address this problem, which is connected to the

sequential weak continuity of the determinant of the deformation gradient

in spaces of functions having low regularity, by means of adding an

appropriate surface energy term to the elastic energy. Based upon

considerations of invertibility we are led to an expression for the

surface energy that admits a physical and a geometrical interpretation,

and that allows for the formulation of a model with better analytical

properties. We obtain, in particular, important regularity properites of

the inverses of deformations, as well as the weak continuity of the

determinants and the existence of minimizers. We show further that the

creation of surface can be modelled by carefully analyzing the jump set of

the inverses, and we point out some connections between the analysis of

cavitation and fracture, the theory of SBV functions, and the theory of

cartesian currents of Giaquinta, Modica and Soucek. (Joint work with

Carlos Mora-Corral, Basque Center for Applied Mathematics).

Thu, 05 Feb 2009

12:00 - 13:00
SR1

On uniqueness of stationary black holes

João Lopes Costa
(Oxford)
Abstract

We prove uniqueness of the Kerr black holes within the connected, non-degenerate, analytic class of regular vacuum black holes. (This is joint work with Piotr Chrusciel. arXiv:0806.0016)

Tue, 03 Feb 2009

17:00 - 18:00
L2

tba

Steve Smith
(University of Illinois, Chicago)
Abstract
Tue, 03 Feb 2009

14:30 - 15:30
L3

The t-dependence and t-improper chromatic numbers of random graphs

Ross Kang
(McGill)
Abstract

We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.

This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.

Mon, 02 Feb 2009

17:00 - 18:00
Gibson 1st Floor SR

Existence of conformal metric with constant Q-curvature

Andrea Malchiodi
(SISSA)
Abstract
A classical problem in differential geometry is to deform the metric of a given manifold so that some of its curvatures become prescribed functions. Classical examples are the Uniformization problem for compact surfaces and the Yamabe problem for compact manifolds of dimension greater than two.
We address a similar problem for the so-called Q-curvature, which plays an important role in conformal geometry and is a natural higher order analogue of the Gauss curvature. The problem is tackled using a variational and Morse theoretical approach.
Mon, 02 Feb 2009

16:00 - 17:00
SR1

Jensen's Theorem and a Simple Application

Timothy Trudgian
(Mathematical Institute Oxford)
Abstract

This second 'problem sheet' of the term includes a proof of Jensen's Theorem for the number of zeroes of an analytic function in a disc, the usefulness of which is highlighted by an application to the Riemann zeta-function.

Mon, 02 Feb 2009
14:15
L3

Apologies, Lecture cancelled

Gabriele Mondello
(Imperial)
Abstract

Open Riemann surfaces and the Weil-Petersson Poisson structure

Mon, 02 Feb 2009
14:15
Oxford-Man Institute

Preferences and implicit risk measures

Professor Hans Föllmer
Abstract

We discuss some connections between various notions of rationality in the face of uncertainty and the theory of convex risk measures, both in a static and a dynamic setting.

Mon, 02 Feb 2009

12:00 - 13:00
L3

AdS/CFT and Generalized Complex Geometry

Maxime Gabella
(Oxford)
Abstract
We use generalized complex geometry to study the AdS/CFT correspondence in type IIB string theory.
Fri, 30 Jan 2009

16:30 - 17:00
DH 3rd floor SR

Modelling the Circulatory System: Evaluating Arterial Pressure and Cardiac Output

Athanasios Tsanas
(Oxford University)
Abstract

The circulatory system is the most important and amongst the most complicated mechanisms in the human body. Consisting of the heart, the arteries and the veins, it is amply aided by a variety of mechanisms aiming to facilitate adequate perfusion of the body tissues at the appropriate pressure. On this talk I am focusing on the development of a computational model which relates patient specific factors (age, gender, whether someone is an athlete/smokes etc) and their effects on different vascular regions which ultimately determine the arterial pressure and the cardiac output.

Fri, 30 Jan 2009
14:30
DH 3rd floor SR

Carbon sequestration

Prof. Andy Woods
(B.P. Institute for Multiphase Flow)
Fri, 30 Jan 2009
14:15
DH 1st floor SR

Dynamic CDO Term Structure Modelling

Damir Filipovic
(Vienna Institute of Finance)
Abstract

This paper provides a unifying approach for valuing contingent claims on a portfolio of credits, such as collateralized debt obligations (CDOs). We introduce the defaultable (T; x)-bonds, which pay one if the aggregated loss process in the underlying pool of the CDO has not exceeded x at maturity T, and zero else. Necessary and sufficient conditions on the stochastic term structure movements for the absence of arbitrage are given. Background market risk as well as feedback contagion effects of the loss process are taken into account. Moreover, we show that any ex- ogenous specification of the volatility and contagion parameters actually yields a unique consistent loss process and thus an arbitrage-free family of (T; x)-bond prices. For the sake of analytical and computational efficiency we then develop a tractable class of doubly stochastic affine term structure models.

Thu, 29 Jan 2009
16:30
DH 1st floor SR

The fluid dynamics of sperm motility

Dave Smith
(Birmingham)
Abstract

Sperm cells have been an archetype for very low Reynolds number swimming since the pioneering work of Gray & Hancock in the 1950s. However, there are fundamental questions regarding the swimming and function of mammalian, and particularly human sperm, that are unanswered, and moreover scientific and technological developments mean that for the first time, answering these questions is now possible.

I will present results of our interdisciplinary work on two topics: (1) the relatively famous problem of 'surface accumulation' of sperm, and (2) characterising the changes to the flagellar beat that occur in high viscosity liquids such as cervical mucus. The approach we use combines both mathematical modelling and high speed imaging experiments.

I will then discuss areas we are currently developing: quantifying the energy transport requirements of sperm, and understanding chemotaxis - the remarkable ability of human sperm to 'smell' lily of the valley perfume, which may be important in fertilisation.

Thu, 29 Jan 2009

14:00 - 15:00
Comlab

Coverage Processes on Spheres and Condition Numbers for Linear Programming

Dr Martin Lotz
(Oxford University and City University of Hong Kong)
Abstract

This talk is concerned with the probabilistic behaviour of a condition

number C(A) for the problem of deciding whether a system of n

homogeneous linear inequalities in m unknowns has a non-zero solution.

In the case where the input system is feasible, the exact probability

distribution of the condition number for random inputs is determined,

and a sharp bound for the general case. In particular, for the

expected value of the logarithm log C(A), an upper bound of order

O(log m) (m the number of variables) is presented which does not

depend on the number of inequalities.

The probability distribution of the condition number C(A) is closely

related to the probability of covering the m-sphere with n spherical

caps of a given radius. As a corollary, we obtain bounds on the

probability of covering the sphere with random caps.

Thu, 29 Jan 2009

12:30 - 13:30
Gibson 1st Floor SR

Convergence analysis of the planewave expansion method for band gap calculations in photonic crystal fibres

Richard Norton
(University of Oxford)
Abstract

Modelling the behaviour of light in photonic crystal fibres requires

solving 2nd-order elliptic eigenvalue problems with discontinuous

coefficients. The eigenfunctions of these problems have limited

regularity. Therefore, the planewave expansion method would appear to

be an unusual choice of method for such problems. In this talk I

examine the convergence properties of the planewave expansion method as

well as demonstrate that smoothing the coefficients in the problem (to

get more regularity) introduces another error and this cancels any

benefit that smoothing may have.

Thu, 29 Jan 2009

09:00 - 10:00
Gibson 1st Floor SR

OxMOS Team Meeting

Duvan Henao and Christoph Ortner
(Oxford University Mathematical Institute)
Tue, 27 Jan 2009

17:00 - 18:00
L2

Singular Soergel Bimodules

Geordie Williamson
(Oxford)
Abstract

To any Coxeter group (W,S) together with an appropriate representation on V one may associate various categories of "singular Soergel bimodules", which are certain bimodules over invariant subrings of

regular functions on V. I will discuss their definition, basic properties and explain how they categorify the associated Hecke algebras and their parabolic modules. I will also outline a motivation coming from geometry and (if time permits) an application in knot theory.

Tue, 27 Jan 2009

15:45 - 16:45
L3

Hamiltonian stationary submanifolds of compact symplectic manifolds

Dominic Joyce
(Oxford)
Abstract
Let $(M,\omega)$ be a symplectic manifold, and $g$ a Riemannian metric on $M$ compatible with $\omega$. If $L$ is a compact Lagrangian submanifold of $(M,\omega)$, we can compute the volume Vol$(L)$ of $L$ using $g$. A Lagrangian $L$ is called {\it Hamiltonian stationary} if it is a stationary point of the volume functional amongst Lagrangians Hamiltonian isotopic to $L$.

Suppose $L'$ is a compact Lagrangian in ${\mathbb C}^n$ which is Hamiltonian stationary and {\it rigid}, that is, all infinitesimal Hamiltonian deformations of $L$ as a Hamiltonian stationary Lagrangian come from rigid motions of ${\mathbb C}^n$. An example of such $L'$ is the $n$-torus $ \bigl\{(z_1,\ldots,z_n)\in{\mathbb C}^n:\vert z_1\vert=a_1, \ldots,\vert z_n\vert=a_n\bigr\}$, for small $a_1,\ldots,a_n>0$.

I will explain a construction of Hamiltonian stationary Lagrangians in any compact symplectic manifold $(M,\omega)$, which works by `gluing in' $tL'$ near a point $p$ in $M$ for small $t>0$.

Tue, 27 Jan 2009

14:30 - 15:30
L3

Random partial orders and random linear extensions

Graham Brightwell
(LSE)
Abstract

Random partial orders and random linear extensions

Several interesting models of random partial orders can be described via a

process that builds the partial order one step at a time, at each point

adding a new maximal element. This process therefore generates a linear

extension of the partial order in tandem with the partial order itself. A

natural condition to demand of such processes is that, if we condition on

the occurrence of some finite partial order after a given number of steps,

then each linear extension of that partial order is equally likely. This

condition is called "order-invariance".

The class of order-invariant processes includes processes generating a

random infinite partial order, as well as those that amount to taking a

random linear extension of a fixed infinite poset.

Our goal is to study order-invariant processes in general. In this talk, I

shall explain some of the problems that need to be resolved, and discuss

some of the combinatorial problems that arise.

(joint work with Malwina Luczak)

Tue, 27 Jan 2009
12:00
L3

Structure of singularities of spacetimes with toroidal or hyperbolic symmetry

Jacques Smulevici
(Cambridge)
Abstract

I will present recent results concerning the study of the global Cauchy problem in general relativity under symmetry assumptions.

More specifically, I will be focusing on the structure of singularities and the uniqueness in the large for solutions of the Einstein equations, the so-called strong cosmic censorship, under the assumption that the initial data is given on some compact manifold with prescribed symmetry.

In particular, I will present some results which concerned the asymptotic behaviour of the area of the orbits of symmetry, a quantity which plays in important role for the study of these solutions. From the point of view of PDE, this corresponds to a global existence theorem for a system of non-linear 1+1 wave equations.

 

Mon, 26 Jan 2009

13:30 - 14:30
Gibson 1st Floor SR

Analysis of variational models for nematic liquid crystal elastomers

Pierluigi Cesana
(SISSA, Trieste, Italy)
Abstract

The relaxation of a free-energy functional which describes the

order-strain interaction in nematic liquid crystal elastomers is obtained

explicitly. We work in the regime of small strains (linearized

kinematics). Adopting the uniaxial order tensor theory or Frank

model to describe the liquid crystal order, we prove that the

minima of the relaxed functional exhibit an effective biaxial

microstructure, as in de Gennes tensor model. In particular, this

implies that the response of the material is soft even if the

order of the system is assumed to be fixed. The relaxed energy

density satisfies a solenoidal quasiconvexification formula.

Mon, 26 Jan 2009

12:00 - 13:00
L3

Black branes beyond thermal equilibrium

Andrei Starinets
(Oxford)
Abstract
Gauge-string duality relates transport properties of certain strongly interacting quantum field theories at finite temperature/density to spectra of normal modes of black branes in dual supergravity backgrounds. The duality serves as a source of quantitative information about the physics of strongly coupled relativistic plasmas as well as a source of qualitative insights into the properties of nuclear matter created in heavy ion collision experiments. It may also help to understand non-equilibrium behavior of black holes/branes. We reflect on recent progress in this field.
Fri, 23 Jan 2009

16:00 - 17:00
SR2

Semiabelian varieties over separably closed fields

Anand Pillay
(Leeds)
Abstract

Given K a separably closed field of finite ( > 1) degree of imperfection, and semiabelian variety A over K, we study the maximal divisible subgroup A^{sharp} of A(K). We show that the {\sharp} functor does not preserve exact sequences and also give an example where A^{\sharp} does not have relative Morley rank. (Joint work with F. Benoist and E. Bouscaren)

Fri, 23 Jan 2009
14:15
DH 1st floor SR

Time inconsistent stochastic control

Tomas Bjork
(Stockholm School of Economics)
Abstract
We present a theory for  stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for subgame perfect Nash equilibrium points.
For a general controlled Markov process and a fairly general objective functional we derive an extension of the standard Hamilton-Jacobi-Bellman  equation, in  the form of a system of non-linear equations, for the determination for the equilibrium strategy as well as the equilibrium value function. All  known examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem coincides with the equilibrium control and value function respectively for the time inconsistent problem. We also study some concrete examples.