15:30
Applications of Proper Orthogonal Decomposition in fluid mechanics and heat transfer problems
Quantum reasoning, diagrammatically, automatically
Abstract
We provide both a diagrammatic and logical system to reason about
quantum phenomena. Essential features are entanglement, the flow of
information from the quantum systems into the classical measurement
contexts, and back---these flows are crucial for several quantum informatic
scheme's such as quantum teleportation---, and mutually unbiassed
observables---e.g. position and momentum. The formal structures we use are
kin to those of topological quantum field theories---e.g. monoidal
categories, compact closure, Frobenius objects, coalgebras. We show that
our diagrammatic/logical language is universal. Informal
appetisers can be found in:
* Introducing Categories to the Practicing Physicist
http://web.comlab.ox.ac.uk/oucl/work/bob.coecke/Cats.pdf
* Kindergarten Quantum Mechanics
16:00
Phase field modelling and simulation of some interface problems
Abstract
Professor Qiang Du will go over some work on modelling interface/microstructures with curvature dependent energies and also the effect of elasticity on critical nuclei morphology.
14:45
On some generalized reinforced random walks on integers
Abstract
This is a joint work with Bruno Schapira, and it is a work in progress.
We study recurrence and transience properties of some edge reinforced random walks on the integers: the probability to go from $x$ to $x+1$ at time $n$ is equal to $f(\alpha_n^x)$ where $\alpha_n^x=\frac{1+\sum_{k=1}^n 1_{(X_{k-1},X_k)=(x,x+1)}}{2+\sum_{k=1}^n 1_{X_{k-1}=x}}$. Depending on the shape of $f$, we give some sufficient criteria for recurrence or transience of these walks
14:45
Volumes of knot complements
Abstract
The complement of a knot or link is a 3-manifold which admits a geometric
structure. However, given a diagram of a knot or link, it seems to be a
difficult problem to determine geometric information about the link
complement. The volume is one piece of geometric information. For large
classes of knots and links with complement admitting a hyperbolic
structure, we show the volume of the link complement is bounded by the
number of twist regions of a diagram. We prove this result for a large
collection of knots and links using a theorem that estimates the change in
volume under Dehn filling. This is joint work with Effie Kalfagianni and
David Futer
13:15
Optimal transport and curvature (monge meets Riemann)
Abstract
Born in France around 1780, the optimal transport problem has known a scientific explosion in the past two decades, in relation with dynamical systems and partial differential equations. Recently it has found unexpected applications in Riemannian geometry, in particular the encoding of Ricci curvature bounds
13:15
Special Geometry over $\mathbb C$ and $\mathbb Q_p$
Abstract
10:30
Profinite completion and MacNeille completion can coincide on modal algebras
Abstract
We show that the profinite completion (a universal algebraic
construction) and the MacNeille completion (an order-theoretic
construction) of a modal algebra $A$ coincide, precisely when the congruences of finite index of $A$ correspond to principal order filters. Examples of such modal algebras are the free K4-algebra and the free PDL-algebra on finitely many generators.
14:00
16:00
3D Navier-Stokes and Euler Equations with Uniformly Large Initial Vorticity: Global Regularity and 3 Dimensional Euler Dynamics
Floer cohomology of Lagrangian spheres in symplectic manifolds
Abstract
I will associate, to every pair of smooth transversal
Lagrangian spheres in a symplectic manifold having vanishing first Chern
class, its Floer cohomology groups. Hamiltonian isotopic spheres give
rise to isomorphic groups. In order to define these Floer cohomology
groups, I will make a key use of symplectic field theory.
13:30
Polynyas; what are they ? Why study them ? How to model them ?
13:15
"Measuring the impact of jumps on multivariate price processes using multipower variation."
09:00
15:30
Polynomials and potential theory for Gaussian radial basis function interpolation
Abstract
Radial basis function (RBF) methods have been successfully used to approximate functions in multidimensional complex domains and are increasingly being used in the numerical solution of partial differential equations. These methods are often called meshfree numerical schemes since, in some cases, they are implemented without an underlying grid or mesh.
The focus of this talk is on the class of RBFs that allow exponential convergence for smooth problems. We will explore the dependence of accuracy and stability on node locations of RBF interpolants. Because Gaussian RBFs with equally spaced centers are related to polynomials through a change of variable, a number of precise conclusions about convergence rates based on the smoothness of the target function will be presented. Collocation methods for PDEs will also be considered.
An introduction to higher-dimensional category theory
Abstract
Category theory is used to study structures in various branches of
mathematics, and higher-dimensional category theory is being developed to
study higher-dimensional versions of those structures. Examples include
higher homotopy theory, higher stacks and gerbes, extended TQFTs,
concurrency, type theory, and higher-dimensional representation theory. In
this talk we will present two general methods for "categorifying" things,
that is, for adding extra dimensions: enrichment and internalisation. We
will show how these have been applied to the definition and study of
2-vector spaces, with 2-representation theory in mind. This talk will be
introductory; in particular it should not be necessary to be familiar with
any category theory other than the basic idea of categories and functors.
14:45
13:30
Combinatorial approaches in phylogenetics
Abstract
Phylogenetics is the reconstruction and analysis of 'evolutionary'
trees and graphs in biology (and related areas of classification, such as linguistics). Discrete mathematics plays an important role in the underlying theory. We will describe some of the ways in which concepts from combinatorics (e.g. poset theory, greedoids, cyclic permutations, Menger's theorem, closure operators, chordal graphs) play a central role. As well as providing an overview, we also describe some recent and new results, and outline some open problems.
13:00
Elliptic curves, Cherednik Hecke algebras and Macdonald polynomials I
Abstract
We provide a realization of Cherednik's double affine Hecke
algebras (for GL_n) as a convolution algebra of functions on moduli spaces
of coherent sheaves on an elliptic curve. As an application we give a
geometric construction of Macdonald polynomials as (traces of) certain
natural perverse sheaves on these moduli spaces. We will discuss the
possible extensions to higher (or lower !) genus curves and the relation
to the Hitchin nilpotent variety. This is (partly) based on joint work
with I. Burban and E. Vasserot.
11:00
Quasi-local energy-momentum and flux for black holes
Abstract
In this talk I will look at a definition of the energy-momentum for the dynamical horizon of a black hole. The talk will begin by examining the role of a special class of observers at null infinity determined by Bramson's concept of frame alignment. It is shown how this is given in terms of asymptotically constant spinor fields and how this framework may be used together with the Nester-Witten two form to give a definition of the Bondi mass at null infinity.
After reviewing Ashtekar's concept of an isolated horizon we will look at the propagation of spinor fields and show how to introduce spinor fields for the horizon which play the role of the asymptotically constant spinor fields at null infinity, giving a concept of alignment of frames on the horizon. It turns out that the equations satisfied by these spinor fields give precisely the Dougan-Mason holomorphic condition on the cross sections of the horizon, together with a simple propagation equation along the generators. When combined with the Nester-Witten 2-form these equations give a quasi-local definition of the mass and momentum of the black hole, as well as a formula for the flux across the horizon. These ideas are then generalised to the case of a dynamical horizon and the results compared to those obtained by Ashtekar as well as to the known answers for a number of exact solutions.
10:00
16:00
Inaugural lecture on "Knots, braids and mathematical structures"
Abstract
In the Examination Schools
Reflected Brownian motion in a wedge : sum-of-exponential stationary densities
Abstract
Reflected Brownian motion (RBM) in a two-dimensional wedge is a well-known stochastic process. With an appropriate drift, it is positive recurrent and has a stationary distribution, and the invariant measure is absolutely continuous with respect to Lebesgue measure. I will give necessary and sufficient conditions for the stationary density to be written as a finite sum of exponentials with linear exponents. Such densities are a natural generalisation of the stationary density of one-dimensional RBM. Using geometric ideas reminiscent of the reflection principle, I will give an explicit formula for the density in such cases, which can be written as a determinant. Joint work with Ton Dieker.
13:15
An algorithmic approach to heterotic compactification
Abstract
00:00
Symmetries in Biological and Physical Networks
Abstract
The symmetries of a dynamical system have a big effect on its typical behaviour. The most obvious effect is pattern formation - the dynamics itself may be symmetric, though often the symmetry of the system is 'broken', and the state has less symmetry than the system. The resulting phenomena are fairly well understood for steady and time-periodic states, and quite a bit can be said for chaotic dynamics. More recently, the concept of 'symmetry' has been generalised to address applications to physical and biological networks. One consequence is a new approach to patterns of synchrony and phase relations. The lecture will describe some of the high points of the emerging theories, including applications to evolution, locomotion, human balance and fluid dynamics.
13:15
13:15
13:00
Mathematical Modelling of mesenchymal stem cell differentiation
09:00
15:30
15:00
Adaptive Multilevel Methods for PDE-Constrained Optimization
Abstract
Adaptive discretizations and iterative multilevel solvers are nowadays well established techniques for the numerical solution of PDEs.
The development of efficient multilevel techniques in the context of PDE-constrained optimization methods is an active research area that offers the potential of reducing the computational costs of the optimization process to an equivalent of only a few PDE solves.
We present a general class of inexact adaptive multilevel SQP-methods for PDE-constrained optimization problems. The algorithm starts with a coarse discretization of the underlying optimization problem and provides
1. implementable criteria for an adaptive refinement strategy of the current discretization based on local error estimators and
2. implementable accuracy requirements for iterative solvers of the PDE and adjoint PDE on the current grid
such that global convergence to the solution of the infinite-dimensional problem is ensured.
We illustrate how the adaptive refinement strategy of the multilevel SQP-method can be implemented by using existing reliable a posteriori error estimators for the state and the adjoint equation. Moreover, we discuss the efficient handling of control constraints and describe how efficent multilevel preconditioners can be constructed for the solution of the arising linear systems.
Numerical results are presented that illustrate the potential of the approach.
This is joint work with Jan Carsten Ziems.