16:00
Constructing CFTs II
Abstract
This is a continuation of https://www.maths.ox.ac.uk/node/61240
This is a continuation of https://www.maths.ox.ac.uk/node/61240
An example of a uniformly proper action is the action of a group (or any of its subgroups) on its Cayley graph. A natural question appearing in a paper of Coulon and Osin, is whether the class of groups acting uniformly properly on hyperbolic spaces coincides with the class of subgroups of hyperbolic groups. In joint work with Vladimir Vankov we construct an uncountable family of finitely generated groups which act uniformly properly on hyperbolic spaces. This gives the first examples of finitely generated groups acting uniformly properly on hyperbolic spaces that are not subgroups of hyperbolic groups. We also give examples that are not virtually torsion-free.
We present two ways of obtaining hypercontractive inequalities for low-degree functions on compact Lie groups: one based on Ricci curvature bounds, the Bakry-Emery criterion and the representation theory of compact Lie groups, and another based on a (very different) probabilistic coupling approach. As applications we make progress on a question of Gowers concerning product-free subsets of the special unitary groups, and we also obtain 'mixing' inequalities for the special unitary groups, the special orthogonal groups, the spin groups and the compact symplectic groups. We expect that the latter inequalities will have applications in physics.
Based on joint work with Guy Kindler (HUJI), Noam Lifshitz (HUJI) and Dor Minzer (MIT).
The local Langlands conjectures connect representations of p-adic groups to certain representations of Galois groups of local fields called Langlands parameters. Recently, there has been a shift towards studying representations over more general coefficient rings and towards certain categorical enhancements of the original conjectures. In this talk, we will focus on representations over coefficient rings with p invertible and how the corresponding category of representations of the p-adic group decomposes.
We use entropy methods to show that the heat equation with Dirichlet boundary conditions on the complement of a compact set in R^d shows a self-similar behaviour much like the usual heat equation on R^d, once we account for the loss of mass due to the boundary. Giving good lower bounds for the fundamental solution on these sets is surprisingly a relatively recent result, and we find some improvements using some advances in logarithmic Sobolev inequalities. In particular, we are able to give optimal asymptotic bounds for large times for the fundamental solution with an explicit approach rate in dimensions larger than 2, and some new bounds in dimension 2.
This is a work in collaboration with Alejandro Gárriz and Fernando Quirós.
In this talk we will study the graph structure of supersingular isogeny graphs. These graphs are known to have very few loops and multi-edges. We formalize this idea by studying and finding bounds for their number of loops and multi-edges. We also find conditions under which these graphs are simple. To do so, we introduce a method of counting the total number of collisions (which are special endomorphisms) based on a trace formula of Gross and a known formula of Kronecker, Gierster and Hurwitz.
The method presented in this talk can be used to study many kinds of collisions in supersingular isogeny graphs. As an application, we will see how this method was used to estimate a certain number of collisions and then show that isogeny graphs do not satisfy a certain cryptographic property that was falsely believed (and proven!) to hold.
I shall begin with a brief history of the problem of trying to understand infinite groups knowing only their finite quotients. I'll then focus on 3-manifold groups, describing the prominent role that they have played in advancing our understanding of this problem in recent years. The story for 3-manifold groups involves a rich interplay of algebra, geometry, and arithmetic. I shall describe arithmetic Kleinian groups that are profinitely rigid in the absolute sense -- ie they can be distinguished from all other finitely generated, residually finite groups by their set of finite quotients. I shall then explain more recent work involving products of Seifert fibered manifolds -- here we find groups that are profinitely rigid in the class of finitely presented groups but not in the class of finitely generated groups. This is joint work with McReynolds, Reid, and Spitler.
We provide a framework for modelling risk and quantifying payment shortfalls in cleared markets with multiple central counterparties (CCPs). Building on the stylised fact that clearing membership is shared among CCPs, we show how this can transmit stress across markets through multiple CCPs. We provide stylised examples to lay out how such stress transmission can take place, as well as empirical evidence to illustrate that the mechanisms we study could be relevant in practice. Furthermore, we show how stress mitigation mechanisms such as variation margin gains haircutting by one CCP can have spillover effects on other CCPs. The framework can be used to enhance CCP stress-testing, which currently relies on the “Cover 2” standard requiring CCPs to be able to withstand the default of their two largest clearing members. We show that who these two clearing members are can be significantly affected by higher-order effects arising from interconnectedness through shared clearing membership. Looking at the full network of CCPs and shared clearing members is therefore important from a financial stability perspective.
This is joint work with Iñaki Aldasoro.
BIS Working Paper No 1052: https://www.bis.org/publ/work1052.pdf
First we recall the mirror symmetry identification of the coordinate ring of certain very stable upward flows in the Hitchin system and the Kirillov algebra for the minuscule representation of the Langlands dual group via the equivariant cohomology of the cominuscule flag variety (e.g. complex Grassmannian). In turn we discuss a conjectural extension of this picture to non-very stable upward flows in terms of a big commutative subalgebra of the Kirillov algebra, which also ringifies the equivariant intersection cohomology of the corresponding affine Schubert variety.
In recent progress on the black hole information paradox, Page curves consistent with unitarity have been obtained in 2d models and in bottom-up braneworld models using the notion of double holography. In this talk we discuss top-down models realizing 4d black holes coupled to a bath in Type IIB string theory and obtain Page curves. We make the ideas behind double holography precise in these models and address causality puzzles which have arisen in the bottom-up models, leading to a refinement of their interpretation.
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
In this session, we will hold a panel discussion on how to best give an academic talk. Among other topics, we will focus on techniques for engaging your audience, for determining the level and technical details of the talk, and for giving both blackboard and slide presentations. The discussion will begin with a directed panel discussion before opening up to questions from the audience.
Approaches to personalized diagnosis and treatment in oncology are heavily reliant on computer models that use molecular and clinical features to
characterize an individual patient’s disease. Most of these models use genome and/or gene expression sequences to develop classifiers of a patient’s
tumor. However, in order to fully model the behavior and therapy response of a tumor, dynamic models are desirable that can act like a Digital Twin of
the cancer patient allowing prognostic and predictive simulations of disease progression, therapy responses and development of resistance. We are
constructing Digital Twins of cancer patients in order to perform dynamic and predictive simulations that improve patient stratification and
facilitate the design of individualized therapeutic strategies. Using a hybrid approach that combines artificial intelligence / machine learning
with dynamic mechanistic modelling we are developing a computational framework for generating Digital Twins. This framework can integrate
different types of data (multiomics, clinical, and existing knowledge) and produces personalized computational models of a patient’s tumor. The
computational models are validated and refined by experimental work and in retrospective patient studies. We present some of the results of the dynamic
Digital Twins simulations in neuroblastoma. They include (i) identification on non-MYCN amplified high risk patients; (ii) prediction of individual
patients’ responses to chemotherapy; and (iii) identification of new drug targets for personalized therapy. Digital Twin models allow the dynamic and
mechanistic simulation of disease progression and therapy response. They are useful for the stratification of patients and the design of personalized
therapies.
Perverse sheaves are an indispensable tool in geometric representation theory that can be used to construct representations and compute composition multiplicities. These ‘sheaves’ live in a certain $\ell$-adic derived category. In this talk we will discuss a beautiful construction of this category based on the pro-étale topology and explore some applications in representation theory.
In his pioneering and celebrated 1968 paper on the elementary theory of finite fields Ax asked if the theory of the class of all the finite rings $\mathbb{Z}/m\mathbb{Z}$, for all $m>1$, is decidable. In that paper, Ax proved that the existential theory of this class is decidable via his result that the theory of the class of all the rings $\mathbb{Z}/p^n\mathbb{Z}$ (with $p$ and $n$ varying) is decidable. This used Chebotarev’s Density Theorem and model theory of pseudo-finite fields.
I will talk about a recent solution jointly with Angus Macintyre of Ax’s Problem using model theory of the ring of adeles of the rational numbers.
Let K be a number field and let L/K be an abelian extension. The genus field of L/K is the largest extension of L which is unramified at all places of L and abelian as an extension of K. The genus group is its Galois group over L, which is a quotient of the class group of L, and the genus number is the size of the genus group. We study the quantitative behaviour of genus numbers as one varies over abelian extensions L/K with fixed Galois group. We give an asymptotic formula for the average value of the genus number and show that any given genus number appears only 0% of the time. This is joint work with Christopher Frei and Daniel Loughran.
Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions. Building models describing the dynamics of complex processes (e.g., weather dynamics, reactive flows, brain/neural activity, etc.) using empirical knowledge or first principles is frequently onerous or infeasible. Therefore, system identification has evolved as a scientific discipline for this task since the 1960ies. Due to the obvious similarity of approximating unknown functions by artificial neural networks, system identification was an early adopter of machine learning methods. In the first part of the talk, we will review the development in this area until now.
For complex systems, identifying the full dynamics using system identification may still lead to high-dimensional models. For engineering tasks like optimization and control synthesis as well as in the context of digital twins, such learned models might still be computationally too challenging in the aforementioned multi-query scenarios. Therefore, it is desirable to identify compact approximate models from the available data. In the second part of this talk, we will therefore exploit that the dynamics of high-fidelity models often evolve in lowdimensional manifolds. We will discuss approaches learning representations of these lowdimensional manifolds using several ideas, including the lifting principle and autoencoders. In particular, we will focus on learning state-space representations that can be used in classical tools for computational engineering. Several numerical examples will illustrate the performance and limitations of the suggested approaches.
Prof. Mauricio Barahona is Chair in Biomathematics and Director of the EPSRC Centre for Mathematics of Precision Healthcare at Imperial. He obtained his PhD at MIT, under Steve Strogatz, followed by a MEC Fellowship at Stanford and the Edison International Fellowship at Caltech. His research is in the development of mathematical and computational methods for the analysis of biological, social and engineering systems using ideas from graph theory, dynamical systems, stochastic processes, optimisation and machine learning.
This talk will explore a series of topics and example applications at the interface of graph theory and dynamics, from synchronization and diffusion dynamics on networks, to graph-based data clustering, to graph convolutional neural networks. The underlying links are provided by concepts in spectral graph theory.
Group cohomology is a powerful tool which has found many applications in modern group theory. It can be calculated and interpreted through geometric, algebraic and topological means, and as such it encodes the relationships between these different aspects of infinite groups. The aim of this talk is to introduce a circle of ideas which link group cohomology with the theory of BNS invariants, and the property of being subgroup separable. No prior knowledge of any of these topics will be assumed.
In the operator algebraic approach to quantum field theory, the DHR category is a braided tensor category describing topological point defects of a theory with at least 1 (+1) dimensions. A single von Neumann algebra with no extra structure can be thought of as a 0 (+1) dimensional quantum field theory. In this case, we would not expect a braided tensor category of point defects since there are not enough dimensions to implement a braiding. We show, however, that one can think of central sequence algebras as operators localized ``at infinity", and apply the DHR recipe to obtain a braided tensor category of bimodules of a von Neumann algebra M, which is a Morita invariant. When M is a II_1 factor, the braided subcategory of automorphic objects recovers Connes' chi(M) and Jones' kappa(M). We compute this for II_1 factors arising naturally from subfactor theory and show that any Drinfeld center of a fusion category can be realized. Based on joint work with Quan Chen and Dave Penneys.
In recent years, duality approaches have yielded new results about the high-dimensional cohomology of several groups and moduli spaces, such as $\operatorname{SL}_n(\mathbb{Z})$ and $\mathcal{M}_g$. I will explain the general strategy of these approaches and survey results that have been obtained so far. To give an example, I will first explain how Borel-Serre duality can be used to show that the rational cohomology of $\operatorname{SL}_n(\mathbb{Z})$ vanishes near its virtual cohomological dimension. This is based on joint work with Miller-Patzt-Sroka-Wilson and builds on results by Church-Farb-Putman. I will then put this into a more general context by giving an overview of analogous results for mapping class groups of surfaces, automorphism groups of free groups and further arithmetic groups such as $\operatorname{SL}_n(\mathcal{O}_K)$ and $\operatorname{Sp}_{2n}(\mathbb{Z})$.
We investigate the theoretical properties of subsampling and hashing as tools for approximate Euclidean norm-preserving embeddings for vectors with (unknown) additive Gaussian noises. Such embeddings are called Johnson-Lindenstrauss embeddings due to their celebrated lemma. Previous work shows that as sparse embeddings, if a comparable embedding dimension to the Gaussian matrices is required, the success of subsampling and hashing closely depends on the $l_\infty$ to $l_2$ ratios of the vectors to be mapped. This paper shows that the presence of noise removes such constrain in high-dimensions; in other words, sparse embeddings such as subsampling and hashing with comparable embedding dimensions to dense embeddings have similar norm-preserving dimensionality-reduction properties, regardless of the $l_\infty$ to $l_2$ ratios of the vectors to be mapped. The key idea in our result is that the noise should be treated as information to be exploited, not simply a nuisance to be removed. Numerical illustrations show better performances of sparse embeddings in the presence of noise.