Mon, 18 Oct 2021

16:00 - 17:00
L3

On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions

GREG PAVLIOTIS
(Imperial College)
Abstract

I will present recent results on the statistical behaviour of a large number of weakly interacting diffusion processes evolving under the influence of a periodic interaction potential. We study the combined mean field and diffusive (homogenisation) limits. In particular, we show that these two limits do not commute if the mean field system constrained on the torus undergoes a phase transition, i.e., if it admits more than one steady state. A typical example of such a system on the torus is given by mean field plane rotator (XY, Heisenberg, O(2)) model. As a by-product of our main results, we also analyse the energetic consequences of the central limit theorem for fluctuations around the mean field limit and derive optimal rates of convergence in relative entropy of the Gibbs measure to the (unique) limit of the mean field energy below the critical temperature. This is joint work with Matias Delgadino (U Texas Austin) and Rishabh Gvalani (MPI Leipzig).

 

 

Mon, 18 Oct 2021

16:00 - 17:00
C1
Mon, 18 Oct 2021
15:45
Virtual

Embeddings into left-orderable simple groups

Arman Darbinyan
(Texas A&M)
Abstract

Topologically speaking, left-orderable countable groups are precisely those countable groups that embed into the group of orientation preserving homeomorphisms of the real line. A recent advancement in the theory of left-orderable groups is the discovery of finitely generated left-orderable simple groups by Hyde and Lodha. We will discuss a construction that extends this result by showing that every countable left-orderable group is a subgroup of such a group. We will also discuss some of the algebraic, geometric, and computability properties that this construction bears. The construction is based on novel topological and geometric methods that also will be discussed. The flexibility of the embedding method allows us to go beyond the class of left-orderable groups as well. Based on a joint work with Markus Steenbock.

Mon, 18 Oct 2021
14:15
L4

Higher rank DT theory from curve counting

Richard Thomas
(Imperial College)
Abstract

Fix a Calabi-Yau 3-fold X. Its DT invariants count stable bundles and sheaves on X. The generalised DT invariants of Joyce-Song count semistable bundles and sheaves on X. I will describe work with Soheyla Feyzbakhsh showing these generalised DT invariants in any rank r can be written in terms of rank 1 invariants. By the MNOP conjecture the latter are determined by the GW invariants of X.
Along the way we also show they are determined by rank 0 invariants counting sheaves supported on surfaces in X. These invariants are predicted by S-duality to be governed by (vector-valued, mock) modular forms.

Mon, 18 Oct 2021
12:45
L4

Nonperturbative Mellin Amplitudes

Joao Silva
(Oxford)
Abstract

We discuss the Mellin amplitude formalism for Conformal Field Theories
(CFT's).  We state the main properties of nonperturbative CFT Mellin
amplitudes: analyticity, unitarity, Polyakov conditions and polynomial
boundedness at infinity. We use Mellin space dispersion relations to
derive a family of sum rules for CFT's. These sum rules suppress the
contribution of double twist operators. We apply the Mellin sum rules
to: the epsilon-expansion and holographic CFT's.

Fri, 15 Oct 2021

15:00 - 16:00
N3.12

Junior Algebra and Representation Theory welcome

Further Information

To start the new academic year, we will hold an informal event for postgraduate students and postdocs to meet, catch up, and drink coffee. The location of this event has changed - we will meet at 3pm in the Quillen Room (N3.12).

Fri, 15 Oct 2021

15:00 - 16:00

Exemplars of Sheaf Theory in TDA

Justin Curry
(University of Albany)
Abstract

In this talk I will present four case studies of sheaves and cosheaves in topological data analysis. The first two are examples of (co)sheaves in the small:

(1) level set persistence---and its efficacious computation via discrete Morse theory---and,

(2) decorated merge trees and Reeb graphs---enriched topological invariants that have enhanced classification power over traditional TDA methods. The second set of examples are focused on (co)sheaves in the large:

(3) understanding the space of merge trees as a stratified map to the space of barcodes and

(4) the development of a new "sheaf of sheaves" that organizes the persistent homology transform over different shapes.

Fri, 15 Oct 2021

14:00 - 15:00
L2

Modeling and topological data analysis for biological ring channels

Prof Veronica Ciocanel
(Duke University)
Abstract

Actin filaments are polymers that interact with myosin motor
proteins and play important roles in cell motility, shape, and
development. Depending on its function, this dynamic network of
interacting proteins reshapes and organizes in a variety of structures,
including bundles, clusters, and contractile rings. Motivated by
observations from the reproductive system of the roundworm C. elegans,
we use an agent-based modeling framework to simulate interactions
between actin filaments and myosin motor proteins inside cells. We also
develop tools based on topological data analysis to understand
time-series data extracted from these filament network interactions. We
use these tools to compare the filament organization resulting from
myosin motors with different properties. We have also recently studied
how myosin motor regulation may regulate actin network architectures
during cell cycle progression. This work also raises questions about how
to assess the significance of topological features in common topological
summary visualizations.
 

Fri, 15 Oct 2021

14:00 - 15:00
L1

What makes a good solution?

Dr Vicky Neale
Abstract

We'll discuss what mathematicians are looking for in written solutions.  How can you set out your ideas clearly, and what are the standard mathematical conventions?

This session is likely to be most relevant for first-year undergraduates, but all are welcome.

Thu, 14 Oct 2021

16:00 - 17:00
Virtual

Kernel-based Statistical Methods for Functional Data

George Wynne
(Imperial College London)
Further Information

ww.datasig.ac.uk/events

Abstract

Kernel-based statistical algorithms have found wide success in statistical machine learning in the past ten years as a non-parametric, easily computable engine for reasoning with probability measures. The main idea is to use a kernel to facilitate a mapping of probability measures, the objects of interest, into well-behaved spaces where calculations can be carried out. This methodology has found wide application, for example two-sample testing, independence testing, goodness-of-fit testing, parameter inference and MCMC thinning. Most theoretical investigations and practical applications have focused on Euclidean data. This talk will outline work that adapts the kernel-based methodology to data in an arbitrary Hilbert space which then opens the door to applications for functional data, where a single data sample is a discretely observed function, for example time series or random surfaces. Such data is becoming increasingly more prominent within the statistical community and in machine learning. Emphasis shall be given to the two-sample and goodness-of-fit testing problems.

Thu, 14 Oct 2021
14:00
Virtual

What is the role of a neuron?

David Bau
(MIT)
Abstract

 

One of the great challenges of neural networks is to understand how they work.  For example: does a neuron encode a meaningful signal on its own?  Or is a neuron simply an undistinguished and arbitrary component of a feature vector space?  The tension between the neuron doctrine and the population coding hypothesis is one of the classical debates in neuroscience. It is a difficult debate to settle without an ability to monitor every individual neuron in the brain.

 

Within artificial neural networks we can examine every neuron. Beginning with the simple proposal that an individual neuron might represent one internal concept, we conduct studies relating deep network neurons to human-understandable concepts in a concrete, quantitative way: Which neurons? Which concepts? Are neurons more meaningful than an arbitrary feature basis? Do neurons play a causal role? We examine both simplified settings and state-of-the-art networks in which neurons learn how to represent meaningful objects within the data without explicit supervision.

 

Following this inquiry in computer vision leads us to insights about the computational structure of practical deep networks that enable several new applications, including semantic manipulation of objects in an image; understanding of the sparse logic of a classifier; and quick, selective editing of generalizable rules within a fully trained generative network.  It also presents an unanswered mathematical question: why is such disentanglement so pervasive?

 

In the talk, we challenge the notion that the internal calculations of a neural network must be hopelessly opaque. Instead, we propose to tear back the curtain and chart a path through the detailed structure of a deep network by which we can begin to understand its logic.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 14 Oct 2021

14:00 - 15:00
Virtual

What is the role of a neuron?

David Bau
(MIT)
Abstract

One of the great challenges of neural networks is to understand how they work.  For example: does a neuron encode a meaningful signal on its own?  Or is a neuron simply an undistinguished and arbitrary component of a feature vector space?  The tension between the neuron doctrine and the population coding hypothesis is one of the classical debates in neuroscience. It is a difficult debate to settle without an ability to monitor every individual neuron in the brain.

 

Within artificial neural networks we can examine every neuron. Beginning with the simple proposal that an individual neuron might represent one internal concept, we conduct studies relating deep network neurons to human-understandable concepts in a concrete, quantitative way: Which neurons? Which concepts? Are neurons more meaningful than an arbitrary feature basis? Do neurons play a causal role? We examine both simplified settings and state-of-the-art networks in which neurons learn how to represent meaningful objects within the data without explicit supervision.

 

Following this inquiry in computer vision leads us to insights about the computational structure of practical deep networks that enable several new applications, including semantic manipulation of objects in an image; understanding of the sparse logic of a classifier; and quick, selective editing of generalizable rules within a fully trained generative network.  It also presents an unanswered mathematical question: why is such disentanglement so pervasive?

 

In the talk, we challenge the notion that the internal calculations of a neural network must be hopelessly opaque. Instead, we propose to tear back the curtain and chart a path through the detailed structure of a deep network by which we can begin to understand its logic.

 

Thu, 14 Oct 2021

12:00 - 13:00
L5

Dynamics Problems Discovered Off The Beaten Research Path

Oliver O'Reilly
((UC Berkeley))
Further Information

Oliver M. O’Reilly is a professor in the Department of Mechanical Engineering and Interim Vice Provost for Undergraduate Education at the University of California at Berkeley. 

Research interests:

Dynamics, Vibrations, Continuum Mechanics

Key publications:

To view a list of Professor O’Reilly’s publications, please visit the Dynamics Lab website.

Abstract

In this talk, I will discuss a wide range of mechanical systems,
including Hoberman’s sphere, Euler’s disk, a sliding cylinder, the
Dynabee, BB-8, and Littlewood’s hoop, and the research they inspired.
Studies of the dynamics of the cylinder ultimately led to a startup
company while studying Euler’s disk led to sponsored research with a
well-known motorcycle company.


This talk is primarily based on research performed with a number of
former students over the past three decades. including Prithvi Akella,
Antonio Bronars, Christopher Daily-Diamond, Evan Hemingway, Theresa
Honein, Patrick Kessler, Nathaniel Goldberg, Christine Gregg, Alyssa
Novelia, and Peter Varadi over the past three decades.

Thu, 14 Oct 2021
11:30
Virtual

Forking independence in the free group

Chloé Perin
(The Hebrew University of Jerusalem)
Abstract

Sela proved in 2006 that the (non abelian) free groups are stable. This implies the existence of a well-behaved forking independence relation, and raises the natural question of giving an algebraic description in the free group of this model-theoretic notion. In a joint work with Rizos Sklinos we give such a description (in a standard fg model F, over any set A of parameters) in terms of the JSJ decomposition of F over A, a geometric group theoretic tool giving a group presentation of F in terms of a graph of groups which encodes much information about its automorphism group relative to A. The main result states that two tuples of elements of F are forking independent over A if and only if they live in essentially disjoint parts of such a JSJ decomposition.

Wed, 13 Oct 2021

16:00 - 17:00
C5

One-relator groups

Monika Kudlinska
(University of Oxford)
Abstract

Given an arbitrary group presentation, often very little can be deduced about the underlying group. It is thus something of a miracle that many properties of one-relator groups can be simply read-off from the defining relator. In this talk, I will discuss some of the classical results in the theory of one-relator groups, as well as the key trick used in many of their proofs. Time-permitting, I'll also discuss more recent work on this subject, including some open problems.

Wed, 13 Oct 2021

14:00 - 15:00
L5

The long shadow of 4d N = 2 SCFTs in mathematics: four minitalks

Abstract

4d N=2 SCFTs are extremely important structures. In the first minitalk we will introduce them, then we will show three areas of mathematics with which this area of physics interacts. The minitalks are independent. The talk will be hybrid, with teams link below.

The junior Geometry and Physics seminar aims to bring together people from both areas, giving talks which are interesting and understandable to both.

Website: https://sites.google.com/view/oxfordpandg/physics-and-geometry-seminar

Teams link: https://www.google.com/url?q=https%3A%2F%2Fteams.microsoft.com%2Fl%2Fme…

Tue, 12 Oct 2021

15:30 - 16:30
L5

The Mirror Clemens-Schmid Sequence

Alan Thompson
(Loughborough)
Abstract

I will present a four-term exact sequence relating the cohomology of a fibration to the cohomology of an open set obtained by removing the preimage of a general linear section of the base. This exact sequence respects three filtrations, the Hodge, weight, and perverse Leray filtrations, so that it is an exact sequence of mixed 
Hodge structures on the graded pieces of the perverse Leray filtration. I claim that this sequence should be thought of as a mirror to the Clemens-Schmid sequence describing the structure of a degeneration and formulate a "mirror P=W" conjecture relating the filtrations on each side. Finally, I will present evidence for this conjecture coming from the K3 surface setting. This is joint work with Charles F. Doran.

Tue, 12 Oct 2021

15:30 - 16:30
L6

Exact correlations in topological quantum chains

Nick Jones
(University of Oxford)
Abstract

Free fermion chains are particularly simple exactly solvable models. Despite this, typically one can find closed expressions for physically important correlators only in certain asymptotic limits. For a particular class of chains, I will show that we can apply Day's formula and Gorodetsky's formula for Toeplitz determinants with rational generating function. This leads to simple closed expressions for determinantal order parameters and the characteristic polynomial of the correlation matrix. The latter result allows us to prove that the ground state of the chain has an exact matrix-product state representation.

Tue, 12 Oct 2021
14:30
L3

A proposal for the convergence analysis of parallel-in-time algorithms on nonlinear problems

Gian Antonucci
(University of Oxford)
Abstract

Over the last few decades, scientists have conducted extensive research on parallelisation in time, which appears to be a promising way to provide additional parallelism when parallelisation in space saturates before all parallel resources have been used. For the simulations of interest to the Culham Centre of Fusion Energy (CCFE), however, time parallelisation is highly non-trivial, because the exponential divergence of nearby trajectories makes it hard for time-parallel numerical integration to achieve convergence. In this talk we present our results for the convergence analysis of parallel-in-time algorithms on nonlinear problems, focussing on what is widely accepted to be the prototypical parallel-in-time method, the Parareal algorithm. Next, we introduce a new error function to measure convergence based on the maximal Lyapunov exponents, and show how it improves the overall parallel speedup when compared to the traditional check used in the literature. We conclude by mentioning how the above tools can help us design and analyse a novel algorithm for the long-time integration of chaotic systems that uses time-parallel algorithms as a sub-procedure.

Tue, 12 Oct 2021

14:00 - 15:00
C5

The Nobel Prize in Physics 2021: the year of complex systems

Erik Hörmann
(University of Oxford)
Abstract

The Royal Swedish Academy of Sciences has today decided to award the 2021 Nobel Prize in Physics for ground-breaking contributions to our understanding of complex physical systems

 

Last Tuesday this announcement got many in our community very excited: never before had the Nobel prize been awarded to a topic so closely related to Network Science. We will try to understand the contributions that have led to this Nobel Prize announcement and their ties with networks science. The presentation will be held by Erik Hörmann, who has been lucky enough to have had the honour and pleasure of studying and working with one of the awardees, Professor Giorgio Parisi, before joining the Mathematical Institute.

Tue, 12 Oct 2021
14:00
L3

Preconditioning for normal equations and least squares

Andy Wathen
(University of Oxford)
Abstract

The solution of systems of linear(ized) equations lies at the heart of many problems in Scientific Computing. In particular for large systems, iterative methods are a primary approach. For many symmetric (or self-adjoint) systems, there are effective solution methods based on the Conjugate Gradient method (for definite problems) or minres (for indefinite problems) in combination with an appropriate preconditioner, which is required in almost all cases. For nonsymmetric systems there are two principal lines of attack: the use of a nonsymmetric iterative method such as gmres, or tranformation into a symmetric problem via the normal equations. In either case, an appropriate preconditioner is generally required. We consider the possibilities here, particularly the idea of preconditioning the normal equations via approximations to the original nonsymmetric matrix. We highlight dangers that readily arise in this approach. Our comments also apply in the context of linear least squares problems as we will explain.

Tue, 12 Oct 2021
14:00
Virtual

Generalized birthday problem for October 12

Sumit Mukherjee
(Columbia)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details. Joint with the Random Matrix Theory Seminar.

Abstract

Suppose there are $n$ students in a class. But assume that not everybody is friends with everyone else, and there is a graph which determines the friendship structure. What is the chance that there are two friends in this class, both with birthdays on October 12? More generally, given a simple labelled graph $G_n$ on $n$ vertices, color each vertex with one of $c=c_n$ colors chosen uniformly at random, independent from other vertices. We study the question: what is the number of monochromatic edges of color 1?

As it turns out, the limiting distribution has three parts, the first and second of which are quadratic and linear functions of a homogeneous Poisson point process, and the third component is an independent Poisson. In fact, we show that any distribution limit must belong to the closure of this class of random variables. As an application, we characterize exactly when the limiting distribution is a Poisson random variable.

This talk is based on joint work with Bhaswar Bhattacharya and Somabha Mukherjee.

Tue, 12 Oct 2021
12:00
Virtual

Quantized twistors and split octonions

Roger Penrose
Abstract

The non-compact exceptional simple group G_2* turns out to be the symmetry group of quantized twistor theory. Certain implications of this remarkable fact will be explored in this talk.

Mon, 11 Oct 2021

16:00 - 17:00
C1

Computing p-adic L-functions of Hecke characters

Håvard Damm-Johnsen
(Oxford)
Abstract

In 1973, Serre defined $p$-adic modular forms as limits of modular forms, and constructed the Leopoldt-Kubota $L$-function as the constant term of a limit of Eisenstein series. This was extended by Deligne-Ribet to totally real number fields, and Lauder and Vonk have developed an algorithm for interpolating $p$-adic $L$-functions of such fields using Serre's idea. We explain what an $L$-function is and why you should care, and then move on to giving an overview of the algorithm, extensions, and applications.

Mon, 11 Oct 2021

16:00 - 17:00
L3

Arbitrage-free neural-SDE market models

SAMUEL COHEN
(University of Oxford)
Abstract

Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying financial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate neural SDE models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model, and will discuss some initial results using real data.

 

Based on joint work with Christoph Reisinger and Sheng Wang