Fri, 05 May 2023

14:00 - 15:00
L4

MHD instability associated with critical layers

Chen Wang
(University of Exeter)
Abstract

Critical levels appear as singularities of waves propagating in shear flows. When magnetic field exists, critical levels are located where the phase velocity of the wave relative to the basic flow matches the velocity of Alfvén waves. Critical levels are known for locally strong wave amplitude in its vicinity, known as the critical layers. In this talk, I will demonstrate the situation where magnetic critical layers can contribute to the instability of the MHD flow.  We consider two different flow configurations. One is the shallow water flow, and the other is the 2D flow on a sphere. Asymptotic analysis has been used to explore deeper insights of the instability mechanism.

Fri, 05 May 2023

14:00 - 15:00
Virtual

Data-driven protein design and molecular latent space simulators

Professor Andrew Ferguson
(Pritzker School of Molecular Engineering University of Chicago)
Abstract

Data-driven modeling and deep learning present powerful tools that are opening up new paradigms and opportunities in the understanding, discovery, and design of soft and biological materials. I will describe our recent applications of deep representational learning to expose the sequence-function relationship within homologous protein families and to use these principles for the data-driven design and experimental testing of synthetic proteins with elevated function. I will then describe an approach based on latent space simulators to learn ultra-fast surrogate models of protein folding and biomolecular assembly by stacking three specialized deep learning networks to (i) encode a molecular system into a slow latent space, (ii) propagate dynamics in this latent space, and (iii) generatively decode a synthetic molecular trajectory.

Fri, 05 May 2023

12:00 - 13:00
C5

The first Hochschild cohomology of twisted group algebras

William Murphy
(City University London)
Abstract

Given a group G and a field k, we can "twist" the multiplication of the group algebra kG by a 2-cocycle, and the result is a twisted group algebra. Twisted group algebras arise as direct sums of blocks of group algebras, and so are of interest in representation and block theory. In this talk we will discuss some recently obtained results on the first Hochschild cohomology of twisted group algebras, in particular that these cohomology groups are nontrivial whenever G is a finite simple group.

Thu, 04 May 2023
17:00
L3

Non-Additive Geometry and Frobenius Correspondences

Shai Haran
(Technion – Israel Institute of Technology)
Abstract

The usual language of algebraic geometry is not appropriate for Arithmetical geometry: addition is singular at the real prime. We developed two languages that overcome this problem: one replace rings by the collection of “vectors” or by bi-operads and another based on “matrices” or props. These are the two languages of [Har17], but we omit the involutions which brings considerable simplifications. Once one understands the delicate commutativity condition one can proceed following Grothendieck footsteps exactly. The square matrices, when viewed up to conjugation, give us new commutative rings with Frobenius endomorphisms.

Thu, 04 May 2023
16:00
L5

Optimality of sieves

James Maynard
(University of Oxford)
Abstract

The closest thing we have to a general method for finding primes in sets is to use sieve methods to turn the problem into some other (hopefully easier) arithmetic questions about the set.

Unfortunately this process is still poorly understood - we don’t know ‘how much’ arithmetic information is sufficient to guarantee the existence of primes, and how much is not sufficient. Often arguments are rather ad-hoc.

I’ll talk about work-in-progress with Kevin Ford which shows that many of our common techniques are not optimal and can be refined, and in many cases these new refinements are provably optimal.

Thu, 04 May 2023

16:00 - 17:00
L6

Open Markets in Stochastic Portfolio Theory and Rank Jacobi Processes

David Itkin (Imperial College London)
Abstract

Stochastic portfolio theory is a framework to study large equity markets over long time horizons. In such settings investors are often confined to trading in an “open market” setup consisting of only assets with high capitalizations. In this work we relax previously studied notions of open markets and develop a tractable framework for them under mild structural conditions on the market.

Within this framework we also introduce a large parametric class of processes, which we call rank Jacobi processes. They produce a stable capital distribution curve consistent with empirical observations. Moreover, there are explicit expressions for the growth-optimal portfolio, and they are also shown to serve as worst-case models for a robust asymptotic growth problem under model ambiguity.

Time permitting, I will also present an extended class of models and illustrate calibration results to CRSP Equity Data.

This talk is based on joint work with Martin Larsson.

Thu, 04 May 2023

16:00 - 17:00
C1

Superrigidity in von Neumann algebras

Daniel Drimbe
(KU Leuven)
Abstract

The pioneering work of Murray and von Neumann shows that any countable discrete group G gives rise in a canonical way to a group von Neumann algebra, denoted L(G). A main theme in operator algebras is to classify group von Neumann algebras, and hence, to understand how much information does L(G) remember of the underlying group G. In the amenable case, the classification problem is completed by the work of Connes from 1970s asserting that for all infinite conjugacy classes amenable groups, their von Neumann algebras are isomorphic.

In sharp contrast, in the non-amenable case, Popa's deformation rigidity/theory (2001) has led to the discovery of several instances when various properties of the group G are remembered by L(G). The goal of this talk is to survey some recent progress in this direction.

Thu, 04 May 2023
14:00
N3.12

The geometry of the conformal manifolds

Maria Nocchi
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 04 May 2023

12:00 - 13:00
L1

Can we tailor the behavior of flexible sheets in flows by adding cuts or folds?

Sophie Ramananarivo
(Ecole Polytechnique)
Abstract

Lightweight compliant surfaces are commonly used as roofs (awnings), filtration systems or propulsive appendages, that operate in a fluid environment. Their flexibility allows for shape to change in fluid flows, to better endure harsh or fluctuating conditions, or enhance flight performance of insect wings for example. The way the structure deforms is however key to fulfill its function, prompting the need for control levers. In this talk, we will consider two ways to tailor the deformation of surfaces in a flow, making use of the properties of origami (folded sheet) and kirigami (sheet with a network of cuts). Previous literature showed that the substructure of folds or cuts allows for sophisticated shape morphing, and produces tunable mechanical properties. We will discuss how those original features impact the way the structure interacts with a flow, through combined experiments and theory. We will notably show that a sheet with a symmetric cutting pattern can produce an asymmetric deformation, and study the underlying fluid-structure couplings to further program shape morphing through the cuts arrangement. We will also show that extreme shape reconfiguration through origami folding can cap fluid drag.

Wed, 03 May 2023
16:00
L6

A Motivation for Studying Hyperbolic Cusps

Misha Schmalian
(University of Oxford)
Abstract

We will give an introduction to hyperbolic cusps and their Dehn fillings. In particular, we will give a brief survey of quantitive results in the field. To motivate this work, we will sketch how these techniques are used for studying the classical question of characteristic slopes on knots.

Tue, 02 May 2023

16:00 - 17:00
C1

Amenable group actions on C*-algebras and the weak containment problem

Siegfried Echterhoff
(University of Münster)
Abstract

The notion of amenable actions by discrete groups on C*-algebras has been introduced by Claire Amantharaman-Delaroche more than thirty years ago, and has become a well understood theory with many applications. So it is somewhat surprising that an established theory of amenable actions by general locally compact groups has been missed until 2020. We now present a theory which extends the discrete case and unifies several notions of approximation properties of actions which have been discussed in the literature. We also present far reaching results towards the weak containment problem which asks wether an action $\alpha:G\to \Aut(A)$ is amenable if and only if the maximal and reduced crossed products coincide.

In this lecture we report on joint work with Alcides Buss and Rufus Willett.

Tue, 02 May 2023

15:00 - 16:00
L3

Centralising Outer Automorphisms

Naomi Andrew
Abstract

Given a group G, one can seek to understand (some of) its subgroups. Centralisers of elements are easy to define, but maybe not so easy to understand: even in such well studied groups as Out(Fn) they are not yet understood in general. I'll discuss recent work with Armando Martino where we extend what is known in Out(Fn), involving a (surprising?) connection to free-by-cyclic groups and their automorphisms as well as working with actions on trees. The strategies seem like they should apply in many more cases, and if time allows I'll discuss ongoing work (with Gilbert Levitt and Armando Martino) exploring these possibilities.

Tue, 02 May 2023
14:30
L3

Newton-MR methods for nonconvex optimization

Yang Liu
(University of Oxford)
Abstract

In this talk, we introduce Newton-MR variants for solving nonconvex optimization problems. Unlike the overwhelming majority of Newton-type methods, which rely on conjugate gradient method as the primary workhorse for their respective sub-problems, Newton-MR employs minimum residual (MINRES) method. With certain useful monotonicity properties of MINRES as well as its inherent ability to detect non-positive curvature directions as soon as they arise, we show that our algorithms come with desirable properties including the optimal first and second-order worst-case complexities. Numerical examples demonstrate the performance of our proposed algorithms.

Tue, 02 May 2023

14:00 - 15:00
L6

An introduction to plethysm

Mark Wildon
(Royal Holloway, University of London)
Abstract

The plethysm product on symmetric functions corresponds to composition of polynomial representations of general linear groups. Decomposing a plethysm product into Schur functions, or equivalently, writing the corresponding composition of Schur functors as a direct sum of Schur functors, is one of the main open problems in algebraic combinatorics. I will give an introduction to these mathematical objects emphasising the beautiful interplay between representation theory and combinatorics. I will end with new results obtained in joint work with Rowena Paget (University of Kent) on stability on plethysm coefficients. No specialist background knowledge will be assumed.

Tue, 02 May 2023
14:00
C6

Real-world Walk Processes with Dr. Carolina Mattsson

Dr. Carolina Mattsson
(CENTAI Institute)
Abstract

What do football passes and financial transactions have in common? Both are observable events in some real-world walk process that is happening over some network that is, however, not directly observable. In both cases, the basis for record-keeping is that these events move something tangible from one node to another. Here we explore process-driven approaches towards analyzing such data, with the goal of answering domain-specific research questions. First, we consider transaction data from a digital community currency recorded over 16 months. Because these are records of a real-world walk process, we know that the time-aggregated network is a flow network. Flow-based network analysis techniques let us concisely describe where and among whom this community currency was circulating. Second, we use a technique called trajectory extraction to transform football match event data into passing sequence data. This allows us to replicate classic results from sports science about possessions and uncover intriguing dynamics of play in five first-tier domestic leagues in Europe during the 2017-18 club season. Taken together, these two applied examples demonstrate the interpretability of process-driven approaches as opposed to, e.g., temporal network analysis, when the data are records of a real-world walk processes.

Tue, 02 May 2023
14:00
L3

A Nematic Theory For a Nonspherical Rarefied Gas

Umberto Zerbinati
(Universiy of Oxford)
Abstract

We propose a nematic model for polyatomic gas, intending to study anisotropic phenomena. Such phenomena stem from the orientational degree of freedom associated with the rod-like molecules composing the gas. We adopt as a primer the Curitss-Boltzmann equation. The main difference with respect to Curtiss theory of hard convex body fluids is the fact that the model here presented takes into account the emergence of a nematic ordering. We will also derive from a kinetic point of view an energy functional similar to the Oseen-Frank energy. The application of the Noll-Coleman procedure to derive new expressions for the stress tensor and the couple-stress tensor will lead to a model capable of taking into account anisotropic effects caused by the emergence of a nematic ordering. In the near future, we hope to adopt finite-element discretisations together with multi-scale methods to simulate the integro-differential equation arising from our model.

Tue, 02 May 2023
12:30
C2

An Introduction to Holography

Alice Luscher
Abstract

Holography, which reveals a specific correspondence between gravitational and quantum theories, is an ongoing area of research that has known a lot of interest these past decades. The duality of holography has many applications: it provides an interpretation for black hole entropy in terms of microstates, it helps our understanding of solid state properties such as superconductivity and strongly coupled quantum systems, and it even offers insight into the mysterious realm of quantum gravity. 

In this talk, I will first introduce the concept of holography and some of its applications. I will then discuss some notions of string theory and geometry that are commonly used in holography. Finally, if time permits, I will present some of our latest results, where we match the energy of membranes in supergravity to properties of the dual quantum models.

Mon, 01 May 2023
17:30
L4

Convexity and Uniqueness in the Calculus of Variations

Bernd Kirchheim
(Universität Leipzig)
Further Information

Please note there are two pde seminars on Monday of W2 (May 1st).

Abstract
Whereas general existence results for minimizers of (vectorial) variational problems are clearly related to (coercivity) and Morreys quasiconvexity, the situation becomes much more constrained if also uniqueness of the minimizers is required for all linear pertubation of the energy. In this case a rather natural notion of functional convexity arises in a general Banach space context. We will discuss what are the specific implications for energy densities of integral cost functions.
Mon, 01 May 2023
16:30
L4

On the stability of multi-dimensional rarefaction waves

Pin Yu
(Tsinghua University)
Further Information

Please note there are two pde seminars on Monday of W2 (May 1st).

Abstract

In his pioneering work in 1860, Riemann proposed the Riemann problem and solved it for isentropic gas in terms of shocks and rarefaction waves. It eventually became the foundation of the theory of one-dimension conservation laws developed in the 20th century. We prove the non-nonlinear structural stability of the Riemann problem for multi-dimensional isentropic Euler equations in the regime of rarefaction waves. This is a joint work with Tian-Wen Luo.

Mon, 01 May 2023
16:00
C3

Combinatorics goes perverse: An Erdős problem on additive Sidon bases

Cédric Pilatte
Abstract

In 1993, Erdős, Sárközy and Sós posed the question of whether there exists a set $S$ of positive integers that is both a Sidon set and an asymptotic basis of order $3$. This means that the sums of two elements of $S$ are all distinct, while the sums of three elements of $S$ cover all sufficiently large integers. In this talk, I will present a construction of such a set, building on ideas of Ruzsa and Cilleruelo. The proof uses a powerful number-theoretic result of Sawin, which is established using cutting-edge algebraic geometry techniques.

Mon, 01 May 2023
14:15
L4

Morse theory on moduli spaces of pairs and the Bogomolov-Miyaoka-Yau inequality

Paul Feehan
(Rutgers University)
Abstract

We describe an approach to Bialynicki-Birula theory for holomorphic $\mathbb{C}^*$ actions on complex analytic spaces and Morse-Bott theory for Hamiltonian functions for the induced circle actions. A key principle is that positivity of a suitably defined "virtual Morse-Bott index" at a critical point of the Hamiltonian function implies that the critical point cannot be a local minimum even when it is a singular point in the moduli space. Inspired by Hitchin’s 1987 study of the moduli space of Higgs monopoles over Riemann surfaces, we apply our method in the context of the moduli space of non-Abelian monopoles or, equivalently, stable holomorphic pairs over a closed, complex, Kaehler surface. We use the Hirzebruch-Riemann-Roch Theorem to compute virtual Morse-Bott indices of all critical strata (Seiberg-Witten moduli subspaces) and show that these indices are positive in a setting motivated by a conjecture that all closed, smooth four-manifolds of Seiberg-Witten simple type (including symplectic four-manifolds) obey the Bogomolov-Miyaoka-Yau inequality.

Mon, 01 May 2023
13:00
L1

Keeping matter in the loop in dS_3 quantum gravity

Alejandra Castro
(Cambridge)
Abstract

In this talk I will discuss a novel mechanism  that couples matter fields to three-dimensional de Sitter quantum gravity. This construction is based on the Chern-Simons formulation of three-dimensional Euclidean gravity, and it centers on a collection of Wilson loops winding around Euclidean de Sitter space. We coin this object a Wilson spool.  To construct the spool, we build novel representations of su(2). To evaluate the spool, we adapt and exploit several known exact results in Chern-Simons theory. Our proposal correctly reproduces the one-loop determinant of a free massive scalar field on S^3 as G_N->0. Moreover, allowing for quantum metric fluctuations, it can be systematically evaluated to any order in perturbation theory.   

Fri, 28 Apr 2023
16:00
L1

Pathways to independent research: fellowships and grants.

Professor Jason Lotay and panel including ECRs from the North and South Wings, and Department of Statistics.
(Mathematical Institute (University of Oxford))
Abstract

Join us for our first Fridays@4 session of Trinity about different academic routes people take post-PhD, with a particular focus on fellowships and grants. We’ll hear from Jason Lotay about his experiences on both sides of the application process, as well as hear about the experiences of ECRs in the South Wing, North Wing, and Statistics. Towards the end of the hour we’ll have a Q+A session with the whole panel, where you can ask any questions you have around this topic!