Failure of the CD condition in sub-Riemannian and sub-Finsler geometry
Abstract
The Lott-Sturm-Villani curvature-dimension condition CD(K,N) provides a synthetic notion for a metric measure space to have curvature bounded from below by K and dimension bounded from above by N. It was proved by Juillet that the CD(K,N) condition is not satisfied in a large class of sub-Riemannian manifolds, for every choice of the parameters K and N. In a joint work with Tommaso Rossi, we extended this result to the setting of almost-Riemannian manifolds and finally it was proved in full generality by Rizzi and Stefani. In this talk I present the ideas behind the different strategies, discussing in particular their possible adaptation to the sub-Finsler setting. Lastly I show how studying the validity of the CD condition in sub-Finsler Carnot groups could help in proving rectifiability of CD spaces.