Tue, 24 Jan 2023
15:00

Computing high-dimensional group cohomology via duality

Benjamin Brück
Abstract

In recent years, duality approaches have yielded new results about the high-dimensional cohomology of several groups and moduli spaces, such as $\operatorname{SL}_n(\mathbb{Z})$ and $\mathcal{M}_g$. I will explain the general strategy of these approaches and survey results that have been obtained so far. To give an example, I will first explain how Borel-Serre duality can be used to show that the rational cohomology of $\operatorname{SL}_n(\mathbb{Z})$ vanishes near its virtual cohomological dimension. This is based on joint work with Miller-Patzt-Sroka-Wilson and builds on results by Church-Farb-Putman. I will then put this into a more general context by giving an overview of analogous results for mapping class groups of surfaces, automorphism groups of free groups and further arithmetic groups such as $\operatorname{SL}_n(\mathcal{O}_K)$ and $\operatorname{Sp}_{2n}(\mathbb{Z})$.

Tue, 24 Jan 2023
14:30
L3

Smoothed analysis of sparse Johnson-Lindenstrauss embeddings

Zhen Shao
Abstract

We investigate the theoretical properties of subsampling and hashing as tools for approximate Euclidean norm-preserving embeddings for vectors with (unknown) additive Gaussian noises. Such embeddings are called Johnson-Lindenstrauss embeddings due to their celebrated lemma. Previous work shows that as sparse embeddings, if a comparable embedding dimension to the Gaussian matrices is required, the success of subsampling and hashing closely depends on the $l_\infty$ to $l_2$ ratios of the vectors to be mapped. This paper shows that the presence of noise removes such constrain in high-dimensions; in other words, sparse embeddings such as subsampling and hashing with comparable embedding dimensions to dense embeddings have similar norm-preserving dimensionality-reduction properties, regardless of the $l_\infty$ to $l_2$ ratios of the vectors to be mapped. The key idea in our result is that the noise should be treated as information to be exploited, not simply a nuisance to be removed. Numerical illustrations show better performances of sparse embeddings in the presence of noise.

Tue, 24 Jan 2023
14:00
L6

Highest weight theory and wall-crossing functors for reduced enveloping algebras

Matthew Westaway
(University of Birmingham)
Abstract

In the last few years, major advances have been made in our understanding of the representation theory of reductive algebraic groups over algebraically closed fields of positive characteristic. Four key tools which are central to this progress are highest weight theory, reduction to the principal block, wall-crossing functors, and tilting modules. When considering instead the representation theory of the Lie algebras of these algebraic groups, more subtleties arise. If we look at those modules whose p-character is in so-called standard Levi form we are able to recover the four tools mentioned above, but they have been less well-studied in this setting. In this talk, we will explore the similarities and differences which arise when employing these tools for the Lie algebras rather than the algebraic groups. This research is funded by a research fellowship from the Royal Commission for the Exhibition of 1851.

Tue, 24 Jan 2023
14:00
L3

Compatible finite elements for terrain following meshes

Karina Kowalczyk
Abstract

In this talk we are presenting a new approach for compatible finite element discretisations for atmospheric flows on a terrain following mesh. In classical compatible finite element discretisations, the H(div)-velocity space involves the application of Piola transforms when mapping from a reference element to the physical element in order to guarantee normal continuity. In the case of a terrain following mesh, this causes an undesired coupling of the horizontal and vertical velocity components. We are proposing a new finite element space, that drops the Piola transform. For solving the equations we introduce a hybridisable formulation with trace variables supported on horizontal cell faces in order to enforce the normal continuity of the velocity in the solution. Alongside the discrete formulation for various fluid equations we discuss solver approaches that are compatible with them and present our latest numerical results.

Tue, 24 Jan 2023

14:00 - 15:00
L4

Asymmetric graph removal

Yuval Wigderson
(Tel Aviv University)
Abstract

The triangle removal lemma of Ruzsa and Szemerédi is a fundamental result in extremal graph theory; very roughly speaking, it says that if a graph is "far" from triangle-free, then it contains "many" triangles. Despite decades of research, there is still a lot that we don't understand about this simple statement; for example, our understanding of the quantitative dependencies is very poor.


In this talk, I will discuss asymmetric versions of the triangle removal lemma, where in some cases we can get almost optimal quantitative bounds. The proofs use a mix of ideas coming from graph theory, number theory, probabilistic combinatorics, and Ramsey theory.


Based on joint work with Lior Gishboliner and Asaf Shapira.

Tue, 24 Jan 2023
12:30
C3

Onsager's conjecture for energy conservation

Samuel Charles
Abstract

In this talk I will discuss Onsager's conjecture for energy conservation. Moreover, in 1949 Onsager conjectured that weak solutions to the incompressible Euler equations, that were Hölder continuous with Hölder exponent greater than 1/3, conserved kinetic energy. Onsager also conjectured that there were weak solutions that were Hölder continuous with Hölder exponent less than 1/3 that didn't conserve kinetic energy. I will discuss the results regarding the former, focusing mainly on the case where the spacial domain is bounded with C^2 boundary, as proved by Bardos and Titi.

Mon, 23 Jan 2023
16:30
L4

Analysis of multi-phase PDE models: from fluids to crowds

Ewelina Zatorska
(Imperial College)
Abstract

This talk will be devoted to our recent developments in the analysis of emerging models for complex flows. I will start from presenting a general PDE system describing two-fluid flows, for which we prove existence of global in time weak solutions for arbitrary large initial data. I will explain where the famous approach of Lions developed for the compressible Navier-Stokes equations fails and how to use a more direct, weighted Kolmogorov criterion to prove compactness of approximating sequences of solutions. Through a formal limit, I will link the two-fluid model to the constrained two-phase models. Applications of such models include modelling of granular flows, crowd motion, or shallow water flow through a channel. The last part of my talk will focus on the rigorous derivation of these models from the compressible Navier-Stokes equations via the vanishing singular pressure or viscosity limit.

Mon, 23 Jan 2023
16:00
L6

Sums of arithmetic functions over F_q[T] and non-unitary distributions

Vivian Kuperberg
(Tel Aviv University)
Abstract

In 2018, Keating, Rodgers, Roditty-Gershon and Rudnick conjectured that the variance of sums of the divisor function in short intervals is described by a certain piecewise polynomial coming from a unitary matrix integral. That is to say, this conjecture ties a straightforward arithmetic problem to random matrix theory. They supported their conjecture by analogous results in the setting of polynomials over a finite field rather than in the integer setting. In this talk, we'll discuss arithmetic problems over F_q[T] and their connections to matrix integrals, focusing on variations on the divisor function problem with symplectic and orthogonal distributions. Joint work with Matilde Lalín.

Mon, 23 Jan 2023
16:00
L6

Sums of arithmetic functions over F_q[T] and non-unitary distributions (Joint junior/senior number theory seminar)

Vivian Kuperberg
(Tel Aviv University)
Abstract

In 2018, Keating, Rodgers, Roditty-Gershon and Rudnick conjectured that the variance of sums of the divisor
function in short intervals is described by a certain piecewise polynomial coming from a unitary matrix integral. That is
to say, this conjecture ties a straightforward arithmetic problem to random matrix theory. They supported their
conjecture by analogous results in the setting of polynomials over a finite field rather than in the integer setting. In this
talk, we'll discuss arithmetic problems over F_q[T] and their connections to matrix integrals, focusing on variations on
the divisor function problem with symplectic and orthogonal distributions. Joint work with Matilde Lalín.

Mon, 23 Jan 2023

15:30 - 16:30
L1

Particle exchange models with several conservation laws

Patrícia Gonçalves
Abstract

In this talk I will present an exclusion process with different types of particles: A, B and C. This last type can be understood as holes. Two scaling limits will be discussed: hydrodynamic limits in the boundary driven setting; and equilibrium fluctuations for an evolution on the torus. In the later case, we distinguish several cases, that depend on the choice of the jump rates, for which we get in the limit either the stochastic Burgers equation or the Ornstein-Uhlenbeck equation. These results match with predictions from non-linear fluctuating hydrodynamics. 
(Joint work with G. Cannizzaro, A. Occelli, R. Misturini).

Mon, 23 Jan 2023
15:30
L4

Unramified correspondence and virtual homology of mapping class groups

Vladmir Markovic (University of Oxford)
Abstract

I shall discuss my recent work showing that the Bogomolov-Tschinkel universality conjecture holds if and only if the mapping class groups of a punctured surface is large. One consequence of this result is that all genus 2 surface-by-surface (and all genus 2 surface-by-free) groups are virtually algebraically fibered. Moreover, I will explain why simple curve homology does not always generate homology of finite covers of closed surface. I will also mention my work with O. Tosic regarding the Putman-Wieland conjecture, and explain the partial solution to the Prill's problem about algebraic curves.

 

Mon, 23 Jan 2023
14:15
L4

Compactified Universal Jacobians over $\overline{\mathcal{M}}_{g,n}$ via GIT

George Cooper
((Oxford University))
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves $\overline{\mathcal{M}}_{g,n}$, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Mon, 23 Jan 2023

14:00 - 15:00
L6

Deep low-rank transport maps for Bayesian inverse problems

Sergey Dolgov
(University of Bath)
Abstract

Characterising intractable high-dimensional random variables is one of the fundamental challenges in stochastic computation. We develop a deep transport map that is suitable for sampling concentrated distributions defined by an unnormalised density function. We approximate the target distribution as the push-forward of a reference distribution under a composition of order-preserving transformations, in which each transformation is formed by a tensor train decomposition. The use of composition of maps moving along a sequence of bridging densities alleviates the difficulty of directly approximating concentrated density functions. We propose two bridging strategies suitable for wide use: tempering the target density with a sequence of increasing powers, and smoothing of an indicator function with a sequence of sigmoids of increasing scales. The latter strategy opens the door to efficient computation of rare event probabilities in Bayesian inference problems.

Numerical experiments on problems constrained by differential equations show little to no increase in the computational complexity with the event probability going to zero, and allow to compute hitherto unattainable estimates of rare event probabilities for complex, high-dimensional posterior densities.
 

Mon, 23 Jan 2023
13:00
L1

Higgsing SCFTs in d=3,4,5,6

Zhenghao Zhong
(Oxford )
Abstract

We study supersymmetric gauge theories with 8 supercharges in d=3,4,5,6. For these theories, one can perform Higgsings by turning on VEVs of scalar fields. However, this process can often be difficult when dealing with superconformal field theories (SCFTs) where the Lagrangian is often not known. Using techniques of magnetic quivers and a new algorithm we call "Inverted Quiver Subtraction", we show how one can easily obtain the SCFT(s) after Higgsing. This technique can be equally well applied to SCFTs in d=3,4,5,6. 

Fri, 20 Jan 2023

16:00 - 17:00
L1

Prime numbers: Techniques, results and questions

James Maynard
(Oxford University )
Abstract

The basic question in prime number theory is to try to understand the number of primes in some interesting set of integers. Unfortunately many of the most basic and natural examples are famous open problems which are over 100 years old!

We aim to give an accessible survey of (a selection of) the main results and techniques in prime number theory. In particular we highlight progress on some of these famous problems, as well as a selection of our favourite problems for future progress.

Fri, 20 Jan 2023
16:00
L1

Departmental Colloquium

Professor James Maynard
(Mathematical Institute (University of Oxford))
Further Information

Title: “Prime numbers: Techniques, results and questions”

Abstract

The basic question in prime number theory is to try to understand the number of primes in some interesting set of integers. Unfortunately many of the most basic and natural examples are famous open problems which are over 100 years old!

We aim to give an accessible survey of (a selection of) the main results and techniques in prime number theory. In particular we highlight progress on some of these famous problems, as well as a selection of our favourite problems for future progress.

Fri, 20 Jan 2023
15:00
L4

Applied Topology TBC

Michael Robinson
(American University)
Further Information

I am an applied mathematician working as an associate professor at American University. I am interested in signal processing, dynamics, and applications of topology.

Fri, 20 Jan 2023

14:00 - 15:00
L3

The inevitable emergence of density-dependent diffusion in expanding phage populations

Dr Diana Fusco
(Dept of Physics University of Cambridge)
Abstract

Reaction-diffusion waves have long been used to describe the growth and spread of populations undergoing a spatial range expansion. Such waves are generally classed as either pulled, where the dynamics are driven by the very tip of the front and stochastic fluctuations are high, or pushed, where cooperation in growth or dispersal results in a bulk-driven wave in which fluctuations are suppressed. These concepts have been well studied experimentally in populations where the cooperation leads to a density-dependent growth rate. By contrast, relatively little is known about experimental populations that exhibit a density-dependent dispersal rate.

Using bacteriophage T7 as a test organism, we present novel experimental measurements that demonstrate that the diffusion of phage T7, in a lawn of host E. coli, is hindered by steric interactions with host bacteria cells. The coupling between host density, phage dispersal and cell lysis caused by viral infection results in an effective density-dependent diffusion rate akin to cooperative behavior. Using a system of reaction-diffusion equations, we show that this effect can result in a transition from a pulled to pushed expansion. Moreover, we find that a second, independent density-dependent effect on phage dispersal spontaneously emerges as a result of the viral incubation period, during which phage is trapped inside the host unable to disperse. Our results indicate both that bacteriophage can be used as a controllable laboratory population to investigate the impact of density-dependent dispersal on evolution, and that the genetic diversity and adaptability of expanding viral populations could be much greater than is currently assumed.

Thu, 19 Jan 2023
16:00
L5

Néron models of Jacobians and Chai's conjecture

Otto Overkamp
(Oxford University)
Abstract

Néron models are mathematical objects which play a very important role in contemporary arithmetic geometry. However, they usually behave badly, particularly in respect of exact sequences and base change, which makes most problems regarding their behaviour very delicate. Chai introduced the base change conductor, a rational number associated with a semiabelian variety $G$ which measures the failure of the Néron model of $G$ to commute with (ramified) base change. Moreover, Chai conjectured that this invariant is additive in certain exact sequences. We shall introduce a new method to study the Néron models of Jacobians of proper (possibly singular) curves, and sketch a proof of Chai's conjecture for semiabelian varieties which are also Jacobians. 

Thu, 19 Jan 2023

16:00 - 17:00
L6

Model Calibration with Optimal Transport

Benjamin Joseph
Abstract

In order for one to infer reasonable predictions from a model, it must be calibrated to reproduce observations in the market. We use the semimartingale optimal transport methodology to formulate this calibration problem into a constrained optimisation problem, with our model calibrated using a finite number of European options observed in the market as constraints. Given such a PDE formulation, we are able to then derive a dual formulation involving an HJB equation which we can numerically solve. We focus on two cases: (1) The stochastic interest rate is known and perfectly matches the observed term structure in the market, however the asset local volatility and correlation are not known and must be calibrated; (2) The dynamics of both the stochastic interest rate and the underlying asset are unknown, and we must jointly calibrate both to European options on the interest rate and on the asset.

Thu, 19 Jan 2023
14:30
L1

Aerodynamics inside and out: Bird respiration and flocking

Leif Ristroph
(Courant Institute)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

Leif Ristroph is an Associate Professor of Mathematics at The Courant Institute, New York University.

'He is an experimental physicist and applied mathematician who specializes in fluid dynamics, with a particular emphasis on fluid-structure interactions as applied to biological and geophysical flows. His biophysical work includes studies of the aerodynamics and stabilization of insect flight as well as the hydrodynamics of schooling and flow-sensing in swimming fish. Relevant to geophysical flows, he is interested in problems ranging from instabilities of interfacial flows to the evolution of shape during fluid mechanical erosion.' (taken from https://math.nyu.edu/~ristroph/)

Selected Publications

L. Ristroph and S. Childress, "Stable hovering of a jellyfish-like flying machine", Journal of the Royal Society Interface 11, 20130992 (2014)

L. Ristroph, M. N.J. Moore, S. Childress, M.J. Shelley, and J. Zhang, "Sculpting of an erodible body by flowing water", Proceedings of the National Academy of Sciences 109, 19606 (2012)

B. Liu, L. Ristroph, A. Weathers, S. Childress, and J. Zhang, "Intrinsic stability of a body hovering in an oscillating airflow", Physical Review Letters 108, 068103 (2012)

Abstract

ife forms have devised impressive and subtle ways to exploit fluid flows. I’ll talk about birds as flying machines whose behaviors can give surprising insights into flow physics. One story explains how flocking interactions can help to bring flapping flyers into orderly formations. A second story involves the more subtle role of aerodynamics in the highly efficient breathing of birds, which is thought to be critical to their ability to fly.

 

Thu, 19 Jan 2023

14:00 - 15:00
L3

Bridging the divide: from matrix to tensor algebra for optimal approximation and compression

Misha Kilmer
(Tufts University)
Abstract

Tensors, also known as multiway arrays, have become ubiquitous as representations for operators or as convenient schemes for storing data. Yet, when it comes to compressing these objects or analyzing the data stored in them, the tendency is to ``flatten” or ``matricize” the data and employ traditional linear algebraic tools, ignoring higher dimensional correlations/structure that could have been exploited. Impediments to the development of equivalent tensor-based approaches stem from the fact that familiar concepts, such as rank and orthogonal decomposition, have no straightforward analogues and/or lead to intractable computational problems for tensors of order three and higher.

In this talk, we will review some of the common tensor decompositions and discuss their theoretical and practical limitations. We then discuss a family of tensor algebras based on a new definition of tensor-tensor products. Unlike other tensor approaches, the framework we derive based around this tensor-tensor product allows us to generalize in a very elegant way all classical algorithms from linear algebra. Furthermore, under our framework, tensors can be decomposed in a natural (e.g. ‘matrix-mimetic’) way with provable approximation properties and with provable benefits over traditional matrix approximation. In addition to several examples from recent literature illustrating the advantages of our tensor-tensor product framework in practice, we highlight interesting open questions and directions for future research.

Thu, 19 Jan 2023

12:00 - 13:00
L6

On the Incompressible Limit for a Tumour Growth Model Incorporating Convective Effects

Markus Schmidtchen
(TU Dresden)
Abstract

In this seminar, we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporated the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion. The main result of this work is the incompressible limit of this model, which builds a bridge between the density-based model and a geometry free-boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.

Wed, 18 Jan 2023
16:00
L6

Condensed Mathematics

Sofía Marlasca Aparicio
(University of Oxford)
Abstract

Condensed Mathematics is a tool recently developed by Clausen and Scholze and it is proving fruitful in many areas of algebra and geometry. In this talk, we will cover the definition of condensed sets, the analogues of topological spaces in the condensed setting. We will also talk about condensed modules over a ring and some of their nice properties like forming an abelian category. Finally, we'll discuss some recent results that have been obtained through the application of Condensed Mathematics.