14:00
Modeling and simulation of fluidic surfaces
Abstract
We briefly review mathematical models of viscous deformable interfaces (such as plasma membranes) leading to fluid equations posed on (evolving) 2D surfaces embedded in $R^3$. We further report on some recent advances in understanding and numerical simulation of the resulting fluid systems using an unfitted finite element method.
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
12:00
A bi-fidelity method for multi-scale kinetic models with uncertain parameters
Abstract
Solving kinetic or related models with high-dimensional random parameters has been a challenging problem. In this talk, we will discuss how to employ the bi-fidelity stochastic collocation and choose efficient low-fidelity models in order to solve a class of multi-scale kinetic equations with uncertainties, including the Boltzmann equation, linear transport and the Vlasov-Poisson equation. In addition, some error analysis for the bi-fidelity method based on these PDEs will be presented. Finally, several numerical examples are shown to validate the efficiency and accuracy of the proposed method.
On wide Aronszajn trees
Abstract
Aronszajn trees are a staple of set theory, but there are applications where the requirement of all levels being countable is of no importance. This is the case in set-theoretic model theory, where trees of height and size ω1 but with no uncountable branches play an important role by being clocks of Ehrenfeucht–Fraïssé games that measure similarity of model of size ℵ1. We call such trees wide Aronszajn. In this context one can also compare trees T and T’ by saying that T weakly embeds into T’ if there is a function f that map T into T’ while preserving the strict order <_T. This order translates into the comparison of winning strategies for the isomorphism player, where any winning strategy for T’ translates into a winning strategy for T’. Hence it is natural to ask if there is a largest such tree, or as we would say, a universal tree for the class of wood Aronszajn trees with weak embeddings. It was known that there is no such a tree under CH, but in 1994 Mekler and Väänanen conjectured that there would be under MA(ω1).
In our upcoming JSL paper with Saharon Shelah we prove that this is not the case: under MA(ω1) there is no universal wide Aronszajn tree.
The talk will discuss that paper. The paper is available on the arxiv and on line at JSL in the preproof version doi: 10.1017/jsl.2020.42.
10:00
Is Invariable Generation Hereditary?
Abstract
I will discuss the notion of invariably generated groups, its importance, and some intuition. I will then present a construction of an invariably generated group that admits an index two subgroup that is not invariably generated. The construction answers questions of Wiegold and of Kantor-Lubotzky-Shalev. This is a joint work with Nir Lazarovich.
Parametric estimation via MMD optimization: robustness to outliers and dependence
Abstract
In this talk, I will study the properties of parametric estimators based on the Maximum Mean Discrepancy (MMD) defined by Briol et al. (2019). In a first time, I will show that these estimators are universal in the i.i.d setting: even in case of misspecification, they converge to the best approximation of the distribution of the data in the model, without ANY assumption on this model. This leads to very strong robustness properties. In a second time, I will show that these results remain valid when the data is not independent, but satisfy instead a weak-dependence condition. This condition is based on a new dependence coefficient, which is itself defined thanks to the MMD. I will show through examples that this new notion of dependence is actually quite general. This talk is based on published works, and works in progress, with Badr-Eddine Chérief Abdellatif (ENSAE Paris), Mathieu Gerber (University of Bristol), Jean-David Fermanian (ENSAE Paris) and Alexis Derumigny (University of Twente):
http://arxiv.org/abs/1912.05737
http://proceedings.mlr.press/v118/cherief-abdellatif20a.html
http://arxiv.org/abs/2006.00840
15:30
An improvement on Łuczak's connected matchings method
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
A connected matching is a matching contained in a connected component. A well-known method due to Łuczak reduces problems about monochromatic paths and cycles in complete graphs to problems about monochromatic matchings in almost complete graphs. We show that these can be further reduced to problems about monochromatic connected matchings in complete graphs.
I will describe Łuczak's reduction, introduce the new reduction, and mention potential applications of the improved method.
A threefold way to integrable probabilistic models
This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.
Abstract
This talk is intended for a broad math and physics audience in particular including students. It will focus on the speaker’s recent contributions to the analysis of the real Ginibre ensemble consisting of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibre matrix follows a different limiting law for purely real eigenvalues than for non-real ones. We will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1 + 1 dimensions which are solvable by the inverse scattering method. The results of this talk are based on our joint work with Jinho Baik (arXiv:1808.02419 and arXiv:2008.01694)
From open to closed strings at genus one
Please contact Erik Panzer or Ömer Gürdoğan to be added to the mailing list and receive joining instructions to the online seminar.
Abstract
In this talk I will discuss relations between the low-energy expansions of open- and closed string amplitudes. At genus zero, it has been shown that the single-valued map of MZVs maps open-string amplitudes to their closed-string counterparts. After reviewing this story, I will discuss recent work at genus one which aims to define a similar mapping from the open to the closed string. Our construction is driven by the differential equations and degeneration limits of certain generating functions of string integrals and suggests a pairing of integration cycles and forms at genus one - analogous to the duality between Parke-Taylor factors and disk boundaries at genus zero. Finally, I will discuss the impact of said mapping on the elliptic MZVs and modular graph forms which arise naturally upon solving these differential equations.
14:30
Rational neural networks
Abstract
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
Diving into the Shallow End
Abstract
In 2013, Reeder–Yu gave a construction of supercuspidal representations by starting with stable characters coming from the shallowest depth of the Moy–Prasad filtration. In this talk, we will be diving deeper—but not too deep. In doing so, we will construct examples of supercuspidal representations coming from a larger class of “shallow” characters. Using methods similar to Reeder–Yu, we can begin to make predictions about the Langlands parameters for these representations.
FFTA: A bi-directional approach to comparing the modular structure of networks
Abstract
Here we propose a new method to compare the modular structure of a pair of node-aligned networks. The majority of current methods, such as normalized mutual information, compare two node partitions derived from a community detection algorithm yet ignore the respective underlying network topologies. Addressing this gap, our method deploys a community detection quality function to assess the fit of each node partition with respect to the other network's connectivity structure. Specifically, for two networks A and B, we project the node partition of B onto the connectivity structure of A. By evaluating the fit of B's partition relative to A's own partition on network A (using a standard quality function), we quantify how well network A describes the modular structure of B. Repeating this in the other direction, we obtain a two-dimensional distance measure, the bi-directional (BiDir) distance. The advantages of our methodology are three-fold. First, it is adaptable to a wide class of community detection algorithms that seek to optimize an objective function. Second, it takes into account the network structure, specifically the strength of the connections within and between communities, and can thus capture differences between networks with similar partitions but where one of them might have a more defined or robust community structure. Third, it can also identify cases in which dissimilar optimal partitions hide the fact that the underlying community structure of both networks is relatively similar. We illustrate our method for a variety of community detection algorithms, including multi-resolution approaches, and a range of both simulated and real world networks.
14:00
Combinatorics from the zeros of polynomials
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
Let $X$ be a random variable, taking values in $\{1,…,n\}$, with standard deviation $\sigma$ and let $f_X$ be its probability generating function. Pemantle conjectured that if $\sigma$ is large and $f_X$ has no roots close to 1 in the complex plane then $X$ must approximate a normal distribution. In this talk, I will discuss a complete resolution of Pemantle's conjecture. As an application, we resolve a conjecture of Ghosh, Liggett and Pemantle by proving a multivariate central limit theorem for, so called, strong Rayleigh distributions. I will also discuss how these sorts of results shed light on random variables that arise naturally in combinatorial settings. This talk is based on joint work with Marcus Michelen.
14:00
Fast randomized numerical rank estimation
Abstract
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
Network models for ponding on sea ice
Abstract
Michael Coughlan (with Sam Howison, Ian Hewitt, Andrew Wells)
Arctic sea ice forms a thin but significant layer at the ocean surface, mediating key climate feedbacks. During summer, surface melting produces considerable volumes of water, which collect on the ice surface in ponds. These ponds have long been suggested as a contributing factor to the discrepancy between observed and predicted sea ice extent. When viewed at large scales ponds have a complicated, approximately fractal geometry and vary in area from tens to thousands of square meters. Increases in pond depth and area lead to further increases in heat absorption and overall melting, contributing to the ice-albedo feedback.
Previous modelling work has focussed either on the physics of individual ponds or on the statistical behaviour of systems of ponds. In this talk I present a physically-based network model for systems of ponds which accounts for both the individual and collective behaviour of ponds. Each pond initially occupies a distinct catchment basin and evolves according to a mass-conserving differential equation representing the melting dynamics for bare and water-covered ice. Ponds can later connect together to form a network with fluxes of water between catchment areas, constrained by the ice topography and pond water levels.
I use the model to explore how the evolution of pond area and hence melting depends on the governing parameters, and to explore how the connections between ponds develop over the melt season. Comparisons with observations are made to demonstrate the ways in which the model qualitatively replicates properties of pond systems, including fractal dimension of pond areas and two distinct regimes of pond complexity that are observed during their development cycle.
Different perimeter-area relationships exist for ponds in the two regimes. The model replicates these relationships and exhibits a percolation transition around the transition between these regimes, a facet of pond behaviour suggested by previous studies. The results reinforce the findings of these studies on percolation thresholds in pond systems and further allow us to constrain pond coverage at this threshold - an important quantity in measuring the scale and effects of the ice-albedo feedback.
12:00
BV formalism, QFT and Gravity: a Homotopy perspective
Abstract
After a review of Batalin-Vilkovisky formalism and homotopy algebras, we discuss how these structures emerge in quantum field theory and gravity. We focus then on the application of these sophisticated mathematical tools to scattering amplitudes (both tree- and loop-level) and to the understanding of the dualities between gauge theories and gravity, highlighting generalizations of old results and presenting new ones.
Random multiplicative functions
Abstract
In this talk I will give an introduction to random multiplicative functions, and cover the recent developments in this area. I will also explain how RMF's are connected to some of the important open problems in Analytic Number Theory.
Stochastic Ricci flow on surfaces
Abstract
The Ricci flow on a surface is an intrinsic evolution of the metric converging to a constant curvature metric within the conformal class. It can be seen as an infinite-dimensional gradient flow. We introduce a natural 'Langevin' version of that flow, thus constructing an SPDE with invariant measure expressed in terms of Liouville Conformal Field Theory.
Joint work with Hao Shen (Wisconsin).
15:45
Isotopy in dimension 4
Abstract
The main result is the existence of smooth, properly embedded 3-discs in S¹ × D³ that are not smoothly isotopic to {1} × D³. We describe a 2-variable Laurent polynomial invariant of 3-discs in S¹ × D³. This allows us to show that, when taken up to isotopy, such 3-discs form an abelian group of infinite rank. Joint work with David Gabai.
Smith theory in filtered Floer homology and Hamiltonian diffeomorphisms
Abstract
We describe how Smith theory applies in the setting of Hamiltonian Floer homology filtered by the action functional, and provide applications to questions regarding Hamiltonian diffeomorphisms, including the Hofer-Zehnder conjecture on the existence of infinitely many periodic points and a question of McDuff-Salamon on Hamiltonian diffeomorphisms of finite order.
12:45
Instantons, symmetries and anomalies in five dimensions
Abstract
All five-dimensional non-abelian gauge theories have a U(1)U(1)IU(1) global symmetry associated with instantonic particles. I will describe a mixed ’t Hooft anomaly between this and other global symmetries of the theory, namely the one-form center symmetry or ordinary flavor symmetry for theories with fundamental matter. I will explore some general dynamical properties of the candidate phases implied by the anomaly, and apply our results to supersymmetric gauge theories in five dimensions, analysing the symmetry enhancement patterns occurring at their conjectured RG fixed points.
Managing your supervisor (NB: No faculty permitted in the session)
Abstract
In this session we discuss techniques to get the most out of your supervision sessions and tips on how to work with different personalities and use your supervisor's skills to your advantage. The session will be run by DPhil students and discussion among students during the session is encouraged.
Finiteness properties of skew polynomial rings
Abstract
Polynomial rings $R[X]$ are a fundamental construction in commutative algebra, under which Hilbert's basis theorem controls a finiteness property: being Noetherian. We will describe the picture for the non-commutative world; this leads us towards other interesting finiteness conditions.
14:00
Classifying Superconformal Defects in Diverse Dimensions
Abstract
We explore general constraints from unitarity, defect superconformal symmetry and locality of bulk-defect couplings to classify possible superconformal defects in superconformal field theories (SCFT) of spacetime dimensions d>2. Despite the general absence of locally conserved currents, the defect CFT contains new distinguished operators with protected quantum numbers that account for the broken bulk symmetries. Consistency with the preserved superconformal symmetry and unitarity requires that such operators arrange into unitarity multiplets of the defect superconformal algebra, which in turn leads to nontrivial constraints on what kinds of defects are admissible in a given SCFT. We will focus on the case of superconformal lines in this talk and comment on several interesting implications of our analysis, such as symmetry-enforced defect conformal manifolds, defect RG flows and possible nontrivial one-form symmetries in various SCFTs.
Harnessing experimentally-validated mathematical models to forecast influenza-mediated pathology
Abstract
Influenza viruses infect millions of individuals each year and cause a significant amount of morbidity and mortality. Understanding how the virus spreads within the lung, how efficacious host immune control is, and how each influences acute lung injury and disease severity is critical to combat the infection. We used an integrative model-experiment exchange to establish the dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, and disease severity. Our model predicts that infection resolution is sensitive to CD8+ T cell expansion, that there is a critical T cell magnitude needed for efficient resolution, and that the rate of T cell-mediated clearance is dependent on infected cell density.
We validated the model through a series of experiments, including CD8 depletion and whole lung histomorphometry. This showed that the infected area of the lung matches the model-predicted infected cell dynamics, and that the resolved area of the lung parallels the relative CD8 dynamics. Additional analysis revealed a nonlinear relation between disease severity, inflammation, and lung injury. These novel links between important host-pathogen kinetics and pathology enhance our ability to forecast disease progression.