13:00
13:00
11:30
Weak canonical bases in NSOP1 theories.
Abstract
Recently in a joint work with J. Dobrowolski and N. Ramsey it is shown that in any NSOP1 theory with existence,
Kim-independence satisfies all the basic axioms over sets (except base monotonicity) that hold in simple theories with forking-independence. This is an extension of the earlier work by I. Kaplan and N. Ramsey that such hold over models in any NSOP1 theory. All simple theories; unbounded PAC fields; vector spaces over ACF with bilinear maps; the model companion of the empty theory in any language are typical NSOP1 examples.
An important issue now is to know the existence of canonical bases. In stable and simple theories well-behaving notion of canonical bases for types over models exists, which is used in almost all the advanced studies. But there are a couple of crucial obstacles in finding canonical bases in NSOP1 theories. In this talk I will report a partial success/limit of the project. Namely, a type of a certain Morley sequence over a model has the weak canonical base. In my talk I will try to explain all the related notions.
Twist Gap and Global Symmetry in Two Dimensions
Link will be sent to mailing list.
Abstract
Philip Maini: Squirrels, Turing and Excitability - Mathematical Modelling in Biology, Ecology and Medicine
Mathematical modelling lives a varied life. It links the grey squirrel invasion in the UK to the analysis of how tumour cells invade the body; Alan Turing's model for pattern formation gives insight into animal coat markings and Premier League Football Shirts; and models for Excitability have been used to model the life cycle of the cellular slime mold and heart attacks.
Philip Maini will reveal all in our latest Oxford Mathematics Public Lecture.
Philip Maini is Professor of Mathematical Biology in the University of Oxford.
Watch live:
https://twitter.com/OxUniMaths
https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Maini
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
Leibnizian and anti-Leibnizian motifs in set theory
Abstract
Leibniz’s principle of identity of indiscernibles at first sight appears completely unrelated to set theory, but Mycielski (1995) formulated a set-theoretic axiom nowadays referred to as LM (for Leibniz-Mycielski) which captures the spirit of Leibniz’s dictum in the following sense: LM holds in a model M of ZF iff M is elementarily equivalent to a model M* in which there is no pair of indiscernibles. LM was further investigated in a 2004 paper of mine, which includes a proof that LM is equivalent to the global form of the Kinna-Wagner selection principle in set theory. On the other hand, one can formulate a strong negation of Leibniz’s principle by first adding a unary predicate I(x) to the usual language of set theory, and then augmenting ZF with a scheme that ensures that I(x) describes a proper class of indiscernibles, thus giving rise to an extension ZFI of ZF that I showed (2005) to be intimately related to Mahlo cardinals of finite order. In this talk I will give an expository account of the above and related results that attest to a lively interaction between set theory and Leibniz’s principle of identity of indiscernibles.
10:00
Poincare's Polyhedron Theorem and Applications to Algorithms.
Abstract
Much progress in the study of 3-manifolds has been made by considering the geometric structures they admit. This is nowhere more true than for 3-manifolds which admit a hyperbolic structure. However, in the land of algorithms a more combinatorial approach is necessary, replacing our charts and isometries with finite simplicial complexes that are defined by a finite amount of data.
In this talk we'll have a look at how in fact one can combine the two approaches, using the geometry of hyperbolic 3-manifolds to assist in this more combinatorial approach. To do so we'll combine tools from Hyperbolic Geometry, Triangulations, and perhaps suprisingly Polynomial Algebra to find explicit bounds on the runtime of an algorithm for comparing Hyperbolic manifolds.
11:00
Subgraph densities in a surface
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
We study the following question at the intersection of extremal and structural graph theory. Given a fixed graph $H$ that embeds in a fixed surface $\Sigma$, what is the maximum number of copies of $H$ in an $n$-vertex graph that embeds in $\Sigma$? Exact answers to this question are known for specific graphs $H$ when $\Sigma$ is the sphere. We aim for more general, albeit less precise, results. We show that the answer to the above question is $\Theta(nf(H))$, where $f(H)$ is a graph invariant called the `flap-number' of $H$, which is independent of $\Sigma$. This simultaneously answers two open problems posed by Eppstein (1993). When $H$ is a complete graph we give more precise answers. This is joint work with Tony Huynh and Gwenaël Joret [https://arxiv.org/abs/2003.13777]
09:30
The small subgraph conditioning method and hypergraphs
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
The small subgraph conditioning method is an analysis of variance technique which was introduced by Robinson and Wormald in 1992, in their proof that almost all cubic graphs are Hamiltonian. The method has been used to prove many structural results about random regular graphs, mostly to show that a certain substructure is present with high probability. I will discuss some applications of the small subgraph conditioning method to hypergraphs, and describe a subtle issue which is absent in the graph setting.
Infinitely regularizing paths, and regularization by noise.
Abstract
Abstract:
In this talk I will discuss regularization by noise from a pathwise perspective using non-linear Young integration, and discuss the relations with occupation measures and local times. This methodology of pathwise regularization by noise was originally proposed by Gubinelli and Catellier (2016), who use the concept of averaging operators and non-linear Young integration to give meaning to certain ill posed SDEs.
In a recent work together with Nicolas Perkowski we show that there exists a class of paths with exceptional regularizing effects on ODEs, using the framework of Gubinelli and Catellier. In particular we prove existence and uniqueness of ODEs perturbed by such a path, even when the drift is given as a Scwartz distribution. Moreover, the flow associated to such ODEs are proven to be infinitely differentiable. Our analysis can be seen as purely pathwise, and is only depending on the existence of a sufficiently regular occupation measure associated to the path added to the ODE.
As an example, we show that a certain type of Gaussian processes has infinitely differentiable local times, whose paths then can be used to obtain the infinitely regularizing effect on ODEs. This gives insight into the powerful effect that noise may have on certain equations. I will also discuss an ongoing extension of these results towards regularization of certain PDE/SPDEs by noise.
14:15
Quantum K-theory and 3d A-model
Abstract
I will discuss some ongoing work on three-dimensional supersymmetric gauge theories and their relationship to (equivariant) quantum K-theory. I will emphasise the interplay between the physical and mathematical motivations and approaches, and attempt to build a dictionary between the two. As an interesting example, I will discuss the quantum K-theory of flag manifolds. The QK ring will be related to the vacuum structure of a gauge theory with Chern-Simons interactions, and the (genus-0) K-theoretic invariants will be computed in terms of explicit residue formulas that can be derived from the relevant supersymmetric path integrals.
12:45
Symplectic duality and implosion -- ZOOM SEMINAR
Abstract
We discuss hyperkahler implosion spaces, their relevance to group actions and why they should fit into the symplectic duality picture. For certain groups we present candidates for the symplectic duals of the associated implosion spaces and provide computational evidence. This is joint work with Amihay Hanany and Frances Kirwan.
North Meets South
Abstract
The classical Riemann-Hilbert correspondence is an elegant statement linking geometry (via flat connections) and topology (via local systems). However, when one allows the connections to have even simple singularities, the naive correspondence breaks down. We will outline some work on understanding this "logarithmic" setting.
The mathematics of beam-forming optimisation with antenna arrays in 5G communication systems
A discussion session will follow the workshop and those interested are invited to stay in the meeting for the discussions.
Abstract
Modern cellular radio systems such as 4G and 5G use antennas with multiple elements, a technique known as MIMO, and the intention is to increase the capacity of the radio channel. 5G allows even more possibilities, such as massive MIMO, where there can be hundreds of elements in the transmit antenna, and beam-forming (or beam-steering), where the phase of the signals fed to the antenna elements is adjusted to focus the signal energy in the direction of the receivers. However, this technology poses some difficult optimization problems, and here mathematicians can contribute. In this talk I will explain the background, and then look at questions such as: what is an appropriate objective function?; what constraints are there?; are any problems of this type convex (or quasi-convex, or difference-of-convex)?; and, can big problems of this type be solved in real time?
Some examples of the Baum-Connes assembly map
Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home
Abstract
We will introduce the Baum-Connes conjecture without coefficients, in the setting of discrete groups, and try to explain why it is interesting for operator algebraists. We will give some idea of the LHS and the RHS of the conjecture, without being too formal, and rather than trying to define the assembly map, we will explain what it does for finite groups, for the integers, for free groups, and finally for wreath products of a finite group with the integers (the latter result is joint work with R. Flores and S. Pooya; it raises a few open questions about classifying the corresponding group C*-algebras up to isomorphism).
Kirchberg’s QWEP Conjecture: Between Connes’ and Tsirelson’s Problems
Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home
Abstract
In January of this year, a solution to Connes' Embedding Problem was announced on arXiv. The paper itself deals firmly in the realm of information theory and relies on a vast network of implications built by many hands over many years to get from an efficient reduction of the so-called Halting problem back to the existence of finite von Neumann algebras that lack nice finite-dimensional approximations. The seminal link in this chain was forged by astonishing results of Kirchberg which showed that Connes' Embedding Problem is equivalent to what is now known as Kirchberg's QWEP Conjecture. In this talk, I aim to introduce Kirchberg's conjecture and to touch on some of the many deep insights in the theory surrounding it.
An Equilibrium Model of the Limit Order Book: a Mean-field Game approach
Abstract
We study a continuous time equilibrium model of limit order book (LOB) in which the liquidity dynamics follows a non-local, reflected mean-field stochastic differential equation (SDE) with evolving intensity. We will see that the frontier of the LOB (e.g., the best ask price) is the value function of a mean-field stochastic control problem, as the limiting version of a Bertrand-type competition among the liquidity providers.
With a detailed analysis on the N-seller static Bertrand game, we formulate a continuous time limiting mean-field control problem of the representative seller.
We then validate the dynamic programming principle (DPP) and show that the value function is a viscosity solution of the corresponding Hamilton-Jacobi-Bellman (HJB) equation.
We argue that the value function can be used to obtain the equilibrium density function of the LOB. (Joint work with Jin Ma)
System Interpolation with Loewner Pencils: Background, Pseudospectra, and Nonlinear Eigenvalue Problems
Abstract
In 2007, Andrew Mayo and Thanos Antoulas proposed a rational interpolation algorithm to solve a basic problem in control theory: given samples of the transfer function of a dynamical system, construct a linear time-invariant system that realizes these samples. The resulting theory enables a wide range of data-driven modeling, and has seen diverse applications and extensions. We will introduce these ideas from a numerical analyst's perspective, show how the selection of interpolation points can be guided by a Sylvester equation and pseudospectra of matrix pencils, and mention an application of these ideas to a contour algorithm for the nonlinear eigenvalue problem. (This talk involves collaborations with Michael Brennan (MIT), Serkan Gugercin (Virginia Tech), and Cosmin Ionita (MathWorks).)
[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]
13:00
11:30
Sets, groups, and fields definable in vector spaces with a bilinear form
Abstract
I will report on my recent work on dimension, definable groups, and definable fields in vector spaces over algebraically closed [real closed] fields equipped with a non-degenerate alternating bilinear form or a non-degenerate [positive-definite] symmetric bilinear form. After a brief overview of the background, I will discuss a notion of dimension and some other ingredients of the proof of the main result, which states that, in the above context, every definable group is (algebraic-by-abelian)-by-algebraic [(semialgebraic-by-abelian)-by-semialgebraic]. It follows from this result that every definable field is definable in the field of scalars, hence either finite or definably isomorphic to it [finite or algebraically closed or real closed].
Bi-interpretation of weak set theories
Abstract
Set theory exhibits a truly robust mutual interpretability phenomenon: in any model of one set theory we can define models of diverse other set theories and vice versa. In any model of ZFC, we can define models of ZFC + GCH and also of ZFC + ¬CH and so on in hundreds of cases. And yet, it turns out, in no instance do these mutual interpretations rise to the level of bi-interpretation. Ali Enayat proved that distinct theories extending ZF are never bi-interpretable, and models of ZF are bi-interpretable only when they are isomorphic. So there is no nontrivial bi-interpretation phenomenon in set theory at the level of ZF or above. Nevertheless, for natural weaker set theories, we prove, including ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1}, \in \rangle$ and $\langle H_{\omega_2}, \in \rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.
On the circle, GMC = CBE
Abstract
In this talk, I would like to advertise the strict equality between two objects from very different areas of mathematical physics:
- Kahane's Gaussian Multiplicative Chaos (GMC), which uses a log-correlated field as input and plays an important role in certain conformal field theories.
- A reference model in random matrices called the Circular Beta Ensemble (CBE).
The goal is to give a precise theorem whose loose form is GMC = CBE. Although it was known that random matrices exhibit log-correlated features, such an exact correspondence is quite a surprise.